

Cloudmarker

Cloudmarker is a cloud monitoring tool and framework.

[image: _images/cloudmarker.svg]
 [https://travis-ci.com/cloudmarker/cloudmarker][image: _images/badge.svg]
 [https://coveralls.io/github/cloudmarker/cloudmarker?branch=master][image: _images/license-MIT-blue.svg]
 [https://github.com/cloudmarker/cloudmarker/blob/master/LICENSE.rst]
Contents

Table of Contents:

	Cloudmarker

	Contents

	What is Cloudmarker?

	Why Cloudmarker?

	Features

	Wishlist

	Install

	Develop

	Resources

	Support

	License

	Tutorial

	API

	Indices

What is Cloudmarker?

Cloudmarker is a cloud monitoring tool and framework. It can be used as
a ready-made tool that audits your Azure or GCP cloud environments as
well as a framework that allows you to develop your own cloud monitoring
software to audit your clouds.

As a monitoring tool, it performs the following actions:

	Retrieves data about each configured cloud using the cloud APIs.

	Saves or indexes the retrieved data into each configured storage
system or indexing engine.

	Analyzes the data for potential issues and generates events that
represent the detected issues.

	Saves the events to configured storage or indexing engines as well as
sends the events as alerts to alerting destinations.

Each of the above four aspects of the tool can be configured via a
configuration file.

For example, the tool can be configured to pull data from Azure and
index its data in Elasticsearch while it also pulls data from GCP and
indexes the GCP data in MongoDB. Similarly, it is possible to configure
the tool to check for unencrypted disks in Azure, generate events for
it, and send them as alerts by email while it checks for insecure
firewall rules in both Azure and GCP, generate events for them, and save
those events in MongoDB.

This degree of flexibility to configure audits for different clouds in
different ways comes from the fact that Cloudmarker is designed as a
combination of lightweight framework and a bunch of plugins that do the
heavylifting for retrieving cloud data, storing the data, analyzing
the data, generating events, and sending alerts. These four types of
plugins are formally known as cloud plugins, store plugins, event
plugins, and alert plugins, respectively.

As a result of this plugin-based architecture, Cloudmarker can also be
used as a framework to develop your own plugins that extend its
capabilities by adding support for new types of clouds or data sources,
storage or indexing engines, event generation, and alerting
destinations.

Why Cloudmarker?

One might wonder why we need a new project like this when similar
projects exist. When we began working on this project in 2017, we were
aware of similar tools that supported AWS and GCP but none that
supported Azure at that time. As a result, we wrote our own tool to
support Azure. We later added support for GCP as well. What began as a
tiny proof of concept gradually turned into a fair amount of code, so we
thought, we might as well share this project online, so that others
could use it and see if they find value in it.

So far, some of the highlights of this project are:

	It is simple. It is easy to understand how to use the four types of
plugins (clouds, stores, events, and alerts) to perform an audit.

	It is excellent at creating an inventory of the cloud environment.

	The data inventory it creates is easy to query.

	It is good at detecting insecure firewall rules and unencrypted disks.
New detection mechanisms are coming up.

We also realize that we can add a lot more functionality to this project
to make it more powerful too. See the Wishlist section below to see
new features we would like to see in this project. Our project is hosted
on GitHub at https://github.com/cloudmarker/cloudmarker. Contributions
and pull requests are welcome.

We hope that you would give this project a shot, see if it addresses
your needs, and provide us some feedback by posting a comment in our
feedback thread [https://github.com/cloudmarker/cloudmarker/issues/100]
or by creating a
new issue [https://github.com/cloudmarker/cloudmarker/issues/new].

Features

Since Cloudmarker is not just a tool but also a framework, a lot of its
functionality can be extended by writing plugins. However, Cloudmarker
also comes bundled with a default set of plugins that can be used as is
without writing a single line of code. Here is a brief overview of the
features that come bundled with Cloudmarker:

	Perform scheduled or ad hoc audits of cloud environment.

	Retrieve data from Azure and GCP.

	Store or index retrieved data in Elasticsearch, MongoDB, Splunk, and
the file system.

	Look for insecure firewall rules and generate firewall rule events.

	Look for unencrypted disks (Azure only) and generate events.

	Send alerts for events via email and Slack as well as save alerts in
one of the supported storage or indexing engines (see the third point
above).

	Normalize firewall rules from Azure and GCP which are in different
formats to a common object model ("com") so that a single query or
event rule can search for or detect issues in firewall rules from both
clouds.

Wishlist

	Add more event plugins to detect different types of insecure
configuration.

	Normalize other types of data into a common object model ("com")
just like we do right now for firewall rules.

Install

Perform the following steps to set up Cloudmarker.

	Create a virtual Python environment and install Cloudmarker in it:

python3 -m venv venv
. venv/bin/activate
pip3 install cloudmarker

	Run sanity test:

cloudmarker -n

The above command runs a mock audit with mock plugins that generate
some mock data. The mock data generated can be found at
/tmp/cloudmarker/. Logs from the tool are written to the standard
output as well as to /tmp/cloudmarker.log.

The -n or --now option tells Cloudmarker to run right now
instead of waiting for a scheduled run.

To learn how to configure and use Cloudmarker with Azure or GCP clouds,
see Cloudmarker Tutorial [https://cloudmarker.readthedocs.io/en/latest/tutorial.html].

Develop

This section describes how to set up a development environment for
Cloudmarker. This section is useful for those who would like to
contribute to Cloudmarker or run Cloudmarker directly from its source.

	We use primarily three tools to perform development on this project:
Python 3, Git, and Make. Your system may already have these tools.
But if not, here are some brief instructions on how they can be
installed.

On macOS, if you have Homebrew [https://brew.sh/] installed, then
these tools can be be installed easily with the following command:

brew install python git

On a Debian GNU/Linux system or in another Debian-based Linux
distribution, they can be installed with the following commands:

apt-get update
apt-get install python3 python3-venv git make

On a CentOS Linux distribution, they can be installed with these
commands:

yum install centos-release-scl
yum install git make rh-python36
scl enable rh-python36 bash

Note: The scl enable command starts a new shell for you to use
Python 3.

On any other system, we hope you can figure out how to install these
tools yourself.

	Clone the project repository and enter its top-level directory:

git clone https://github.com/cloudmarker/cloudmarker.git
cd cloudmarker

	Create a virtual Python environment for development purpose:

make venv deps

This creates a virtual Python environment at ~/.venv/cloudmarker.
Additionally, it also creates a convenience script named venv in
the current directory to easily activate the virtual Python
environment which we will soon see in the next point.

To undo this step at anytime in future, i.e., delete the virtual
Python environment directory, either enter
rm -rf venv ~/.venv/cloudmarker or enter make rmvenv.

	Activate the virtual Python environment:

. ./venv

	In the top-level directory of the project, enter this command:

python3 -m cloudmarker -n

This generates mock data at /tmp/cloudmarker. This step serves as
a sanity check that ensures that the development environment is
correctly set up and that the Cloudmarker audit framework is running
properly.

	Now that the project is set up correctly, you can create a
cloudmarker.yaml to configure Cloudmarker to scan/audit your
cloud or you can perform more development on the Cloudmarker source
code. See Cloudmarker Tutorial [https://cloudmarker.readthedocs.io/en/latest/tutorial.html] for more details.

	If you have set up a development environment to perform more
development on Cloudmarker, please consider sending a pull request to
us if you think your development work would be useful to the
community.

	Before sending a pull request, please run the unit tests, code
coverage, linters, and document generator to ensure that no existing
test has been broken and the pull request adheres to our coding
conventions:

make test
make coverage
make lint
make docs

To run these four targets in one shot, enter this “shortcut” target:

make checks

Open htmlcov/index.html with a web browser to view the code
coverage report.

Open docs/_build/html/index.html with a web browser to view the
generated documentation.

Resources

Here is a list of useful links about this project:

	Documentation on Read The Docs [https://cloudmarker.readthedocs.org/]

	Latest release on PyPI [https://pypi.python.org/pypi/cloudmarker]

	Source code on GitHub [https://github.com/cloudmarker/cloudmarker]

	Issue tracker on GitHub [https://github.com/cloudmarker/cloudmarker/issues]

	Changelog on GitHub [https://github.com/cloudmarker/cloudmarker/blob/master/CHANGES.rst]

	Cloudmarker channel on Slack [https://cloudmarker.slack.com/]

	Invitation to Cloudmarker channel on Slack [https://bit.ly/cmslack]

Support

To report bugs, suggest improvements, or ask questions, please create a
new issue at http://github.com/cloudmarker/cloudmarker/issues.

License

This is free software. You are permitted to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of it, under the
terms of the MIT License. See LICENSE.rst [https://github.com/cloudmarker/cloudmarker/blob/master/LICENSE.rst] for the complete license.

This software is provided WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
LICENSE.rst [https://github.com/cloudmarker/cloudmarker/blob/master/LICENSE.rst] for the complete disclaimer.

Tutorial

	Cloudmarker Tutorial
	Install

	Get Started
	Configuration Format
	plugins

	audits

	run

	Base Configuration

	Cascading Configuration

	Cloud Plugins
	AzCloud

	AzVM

	GCPCloud

	MockCloud

	Event Plugins
	FirewallRuleEvent

	AzVMOSDiskEncryptionEvent

	AzVMDataDiskEncryptionEvent

	MockEvent

	Store Plugins
	FileStore

	EsStore

	MongoDBStore

	SplunkHECStore

	Alert Plugins
	EmailAlert

	SlackAlert

	Framework
	Schedule

	Logger

	Email

API

	Cloudmarker API
	cloudmarker package
	Subpackages
	cloudmarker.alerts package
	Submodules

	cloudmarker.alerts.emailalert module

	cloudmarker.alerts.slackalert module

	cloudmarker.clouds package
	Submodules

	cloudmarker.clouds.azcloud module

	cloudmarker.clouds.azvm module

	cloudmarker.clouds.gcpcloud module

	cloudmarker.clouds.mockcloud module

	cloudmarker.events package
	Submodules

	cloudmarker.events.azvmdatadiskencryptionevent module

	cloudmarker.events.azvmosdiskencryptionevent module

	cloudmarker.events.firewallruleevent module

	cloudmarker.events.mockevent module

	cloudmarker.stores package
	Submodules

	cloudmarker.stores.esstore module

	cloudmarker.stores.filestore module

	cloudmarker.stores.mongodbstore module

	cloudmarker.stores.splunkhecstore module

	Submodules

	cloudmarker.baseconfig module

	cloudmarker.manager module

	cloudmarker.util module

	cloudmarker.workers module

Indices

	Index

	Module Index

	Search Page

Cloudmarker Tutorial

Cloudmarker is a cloud monitoring tool and framework.

Install

	Create a virtual Python environment and install Cloudmarker in it:

python3 -m venv venv
. venv/bin/activate
pip3 install cloudmarker

	Run sanity test:

cloudmarker -n

The above command runs a mock audit with mock plugins that generate
some mock data. The mock data generated can be found at
/tmp/cloudmarker/. Logs from the tool are written to the standard
output as well as to /tmp/cloudmarker.log.

The -n or --now option tells Cloudmarker to run right now
instead of waiting for a scheduled run.

Get Started

Cloudmarker’s behaviour is driven by configuration files written in
YAML [https://en.wikipedia.org/wiki/YAML] format. Cloudmarker comes
with two built-in mock plugins known as MockCloud and MockEvent.
These mock plugins are useful in generating some mock data to test out
the Cloudmarker framework and familiarize oneself with how Cloudmarker
can be configured.

We will first see how to configure the MockCloud plugin, just so
that we can quickly get started with understanding the configuration
file format without having to work out how to provide Cloudmarker access
to real clouds. We will see how to work with real clouds later in this
document. Follow these steps to get started:

	Create a config file named cloudmarker.yaml in the current
directory with the following content:

plugins:
 mymockcloud:
 plugin: cloudmarker.clouds.mockcloud.MockCloud
 params:
 record_count: 5
 record_types:
 - apple
 - ball
 - cat

audits:
 mymockaudit:
 clouds:
 - mymockcloud
 stores:
 - filestore
 events:
 - mockevent
 alerts:
 - filestore

run:
 - mymockaudit

	Enter this command to run Cloudmarker:

cloudmarker -n

	Examine the output in
/tmp/cloudmarker/mymockaudit_mymockcloud.json. It should contain
a JSON array with 5 objects as defined in the record_count value
in the config. There are record_type fields in these objects that
cycle between the values "apple", "ball", and "cat" as
defined in the record_types value in the config. The data we see
in this output file is generated by the
cloudmarker.clouds.mockcloud.MockCloud plugin defined under
the mymockcloud config key.

	Now examine the output in /tmp/cloudmarker/mymockaudit_mockevent.
It should contain a JSON array with 2 objects. This data is generated
by the cloudmarker.clouds.mockcloud.MockEvent plugin
referred to as mockevent. The mockevent config key is defined
in the built-in base config.

	Note that the mock audit files written at /tmp/cloudmarker/ have
names that are composed of audit key name, underscore, and plugin key
name. These files are written by the
cloudmarker.clouds.filestore.FileStore plugin which is
specified in the config as filestore. The filestore config
key is defined in the built-in base config.

Configuration Format

Let us take a closer look at the config file format in the previous
section:

plugins:
 mymockcloud:
 plugin: cloudmarker.clouds.mockcloud.MockCloud
 params:
 record_count: 5
 record_types:
 - apple
 - ball
 - cat

audits:
 mymockaudit:
 clouds:
 - mymockcloud
 stores:
 - filestore
 events:
 - mockevent
 alerts:
 - filestore

run:
 - mymockaudit

There are three top-level config keys: plugins, audits, and
run. These top-level keys and their values are input to the
Cloudmarker framework. They tell the framework what to do. Let us see
each top-level key in more detail.

plugins

The plugins key defines one or more plugin configs. In the above
example, we have defined only one plugin config for the
cloudmarker.clouds.mockcloud.MockCloud plugin. A plugin is a
Python class that implements a few methods required by the Cloudmarker
framework. In this case, the MockCloud plugin has the code to
generate some mock data for the purpose of testing other plugins.

Under the plugins key, we have one or more user-defined keys that
name our plugin configs. In this example, we have defined one plugin
config and chosen that name mymockcloud for it. We could name this
anything. This name appears in the logs, so it is good to name this
meaningfully.

Under the user-defined key for a plugin, there are at most two keys:

	plugin: Its value is the fully qualified class name of the plugin
class.

	params: Its value is a mapping of key-value pairs that specify the
keyword arguments to pass to the plugin class constructor expression.
For example, see the API documentation of MockCloud by clicking on
this link: cloudmarker.clouds.mockcloud.MockCloud. We can see
that the config key names record_count and record_types under
the the params config key match the parameter names of the
MockCloud plugin.

audits

The audits key defines one or more audit configs. In the above
example, we have defined only one audit config to generate mock data
using the plugin defined under the mymockcloud config key earlier.

Under the audits key, we have one or more user-defined keys that
name our audit configs. In this example, we have defined one audit
config named key mymockaudit. This name appears in the logs, so it
is good to name this meaningfully.

Under the user-defined key for an audit, there are four keys:

	clouds: Its value is a list of config keys defined under the
plugins key. Each key should refer to a cloud plugin.

	stores: Its value is a list of config keys defined under the
plugins key. Each key should refer to a store plugin.

	events: Its value is a list of config keys defined under the
plugins key. Each key should refer to an event plugin.

	alerts: Its value is a list of config keys defined under the
plugins key. Each key should refer to a store or alert plugin.

The Cloudmarker framework instantiates all the plugins in an audit and
then lets the cloud plugins generate cloud records. Within an audit,
records generated by each cloud plugin are then fed to each store and
event plugin configured in the same audit.

Each cloud plugin generates data, typically, by connecting to a cloud
and pulling cloud data related to resources configured in the cloud.
Each cloud plugin emits this data in Python dictionary formats (appears
as JSON when written to files or a storage/indexing system that can
store JSON documents). We call each such dictionary object (or JSON
document) as a record.

Each event plugin then receives the data generated by the cloud plugins
configured within the same audit. An event plugin checks each record for
security issues or some pattern. If a security issue is found in some
record or if the pattern being checked for is found, then the event
plugins generate one or more events for it. These events are fed to each
alert plugin in the same audit.

Each store plugin takes the data fed to it and sends it to the store
destination. A store destination is typically a storage or indexing
engine such as Elasticsearch, Splunk, etc.

Each alert plugin takes events fed to it and sends the events to an
alerting destination. A store plugin can also function as an alert
plugin and vice-versa. From the framework’s perspective, there is no
difference between store and alert plugin classes because they
implemented the same methods. The only difference is that the store
plugins are mentioned under the stores key in an audit config and
the alert plugins are mentioned under the alerts key in an audit
config. However, some alert plugins such as the ones to send events as
email alerts or Slack messages make sense only as alert plugins and not
as store plugins. That’s because we wouldn’t want to email the entire
cloud data to email recipients or Slack users but we might want to email
just the events as notifications to email recipients or Slack users.

run

Finally, the run key defines the audits we want to run. Its value is
a list of one or more user-defined audit keys.

Base Configuration

In the above examples, we defined mymockcloud under the plugins
key but we did not define filestore or mockevent although we
used them under the audits key. That’s because they are already
defined in the built-in base config. Enter this command to see the
built-in base config:

cloudmarker --print-base-config

Alternatively, see the complete built-in base config here:
cloudmarker.baseconfig.

The config in cloudmarker.yaml or any other user-specified config
files is merged with the built-in base config to arrive at the final
working config. The merging rules are described in the next section.

Cascading Configuration

By default, Cloudmarker looks for the following config files in the
order specified:

	/etc/cloudmarker.yaml

	~/.cloudmarker.yaml

	~/cloudmarker.yaml

	cloudmarker.yaml

Note that the built-in base config is always used. If a config file
in the list above is missing, it is ignored. If all config files in the
list above are missing, then only the built-in base config is used.

If one or more config files are present, they are merged together with
the built-in base config to arrive at the final working config. The
built-in base config is loaded first. Then the config files are loaded
and merged in the order specified in the list above. A config that is
loaded later has higher precedence in case of conflicting values for the
same key.

A custom list of config files to look for can be specified with the
-c or --config option. For example, the following command first
loads the built-in base config, then foo.yaml from the current
directory, and then bar.yaml from the current directory:

cloudmarker -n -c foo.yaml bar.yaml

It means that in case of conflicting values for the key, the
builtin-base config has the lowest priority and bar.yaml has the
highest priority.

Here is a precise specification of how two configs are merged:

	If a key in the first config does not exist in the second config, then
the final config contains this key with its value intact.

	If a key in the second config does not exist in the first config, then
the final config contains this key with its value intact.

	If a key in the first config also exists in the second config, then
the final config contains this key and its value is the value found in
the second config.

This means, if a key with a list value exists in the first config and
the same key with another list value exists in the second config, then
the final config is the key with the list value in the second config.
The final config does not contain the key with both lists merged
together as its value.

For example, let us assume that foo.yaml contains this key:

run:
 - mockaudit
 - fooaudit

And bar.yaml contains this key:

run:
 - baraudit

Then cloudmarker -n -c foo.yaml bar.yaml leads to the following
value for this config key:

run:
 - baraudit

Note how the list value of bar.yaml replaced the list value of
foo.yaml while merging. In other words, when we talk about merging
of configs, only keys are merged, i.e., keys from both configs are
picked for the final working config. Values are not merged.

When there are multiple config files to be merged, the first config file
is merged with the base config file, then the second config file is
merged with the result of the previous merge, and so on.

Cloud Plugins

AzCloud

To get started with a real audit, it is necessary to configure
Cloudmarker with an actual cloud such as Azure or GCP. In this section,
we see how to configure Cloudmarker for Azure with the AzCloud
plugin.

This plugin is offered by the
cloudmarker.clouds.azcloud.AzCloud plugin class.

Perform the following steps to configure this plugin:

	At first follow this how-to document at
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
to register an application in Azure Active Directory to allow
Cloudmarker to access your Azure resources.

	After completing the above step, create a config file named
cloudmarker.yaml in the current directory with this content:

plugins:
 myazcloud:
 plugin: cloudmarker.clouds.azcloud.AzCloud
 params:
 tenant: null
 client: null
 secret: null

audits:
 myazaudit:
 clouds:
 - myazcloud
 stores:
 - filestore
 events:
 - firewallruleevent
 alerts:
 - filestore

run:
 - myazaudit

	Then replace the null values for tenant, client, and
secret as described below:

	tenant: This is the tenant ID obtained from following the “Get
tenant ID” section of the how-to document. This is also known as
the directory ID. To find this value, go to Azure Portal [https://portal.azure.com/] > Azure
Active Directory > Properties > Directory ID. This value is also
available in the newly created application at Azure Portal [https://portal.azure.com/] >
Azure Active Directory > App Registrations > (the app) > Directory
(tenant) ID.

	client: This is the application ID created in the “Get
application ID and authentication key” section of the how-to
document. This value is also available at Azure Portal [https://portal.azure.com/] > Azure
Active Directory > App Registrations > (the app) > Application
(client) ID.

	secret: This is the secret password created in the “Get
application ID and authentication key” section of the how-to
document. This valuable is available only while creating a new
secret at Azure Portal [https://portal.azure.com/] > Azure Active Directory > App
Registrations > (the app) > New client secret.

	After setting these values, enter this command to run Cloudmarker:

cloudmarker -n

	After Cloudmarker completes running, check these files in
/tmp/cloudmarker/:

	myazaudit_myazcloud.json: This file contains the data obtained
from Azure cloud by the cloudmarker.clouds.azcloud.AzCloud
plugin configured under the myazaudit config key.

	myazaudit_firewallruleevent.json: This file contains insecure
firewall rules detected by the
cloudmarker.events.firewallruleevent.FirewallRuleEvent
referred to with the key name firewallruleevent in the config.
Note that firewallruleevent config key is defined in the
built-in base config.

AzVM

This is another plugin for Azure that has a narrower but deeper scope
than the AzCloud plugin described in the previous section. It pulls
only virtual machine (VM) data with more details about each VM.

This plugin is offered by the cloudmarker.clouds.azvm.AzVM
plugin class.

Perform the following steps to use the AzVM plugin:

	As mentioned in the previous section, register an application in
Azure Active Directory to allow Cloudmarker to access your Azure
resources.

	After completing the above step, create a config file named
cloudmarker.yaml in the current directory with this content:

plugins:
 myazvm:
 plugin: cloudmarker.clouds.azvm.AzVM
 params:
 tenant: f3cfe067-d008-48f3-b026-cf0dd7409b25
 client: 6c4980e2-2652-466d-8157-853f9d0a288f
 secret: 4FAU+gYAkl96zbnlXZqu25d5iZBlDhzj0EHD8fi6HR8=

audits:
 myazaudit:
 clouds:
 - myazvm
 stores:
 - filestore
 events:
 - firewallruleevent
 - azvmosdiskencryptionevent
 - azvmdatadiskencryptionevent
 alerts:
 - filestore

run:
 - myazaudit

	Then replace the null values for tenant, client, and
secret with actual values as described in the previous section.

	After setting these values, enter this command to run Cloudmarker:

cloudmarker -n

	After Cloudmarker completes running, check the generated files in
/tmp/cloudmarker/.

Let us discuss how AzCloud and AzVM are different.

AzCloud pulls data at subscription level. It first connects to Azure
with the specified credentials, then queries for all subscriptions it
has access to, and then loops over each subscription and makes one API
call per subscription per resource type to pull all resources of that
type. It pulls data related to virtual machines (VMs), application
gateways, load balancers, network interface controllers (NICs), network
security groups (NSGs), etc.

AzVM on the other hand pulls data at the virtual machine level. It
makes one API call per VM. Thus, it makes more number of API calls. It
retrieves only VM data but it gets more detailed VM data. For example,
this plugin also obtains the power state, the disk encryption status,
etc. of the VM. These detailed level of information cannot be obtained
by the AzCloud plugin.

To understand the difference between the two plugins better, consider an
environment where there are 5 subscriptions such that each subscription
has exactly 20 VMs and 50 NSGs. So, there are a total of 100 VMs and 250
NSGs. AzCloud would make only 5 API calls to pull data
for all 100 VMs and another 5 API calls to pull data for all NSGs. On
the other hand, AzVM would make 100 API calls to pull data for all
VMs. AzVM cannot pull data for NSGs or any other type of resources.
However, the VM data obtained by AzVM contains power state, disk
encryption status, and other detailed information. AzCloud data does
not pull such detailed information.

In general, AzCloud runs faster due to less number of API calls and
is usually sufficient for most types of cloud monitoring use cases.
AzVM is necessary only for advanced use cases such as monitoring
whether a particular VM is running or stopped, if its disks are
encrypted or not, etc.

Note in the config above that event plugins
cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent
and
cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent
referred to with the built-in base config keys
azvmosdiskencryptionevent and azvmdatadiskencryptionevent can be
used with AzVM. These plugins work only with AzVM records and
generates events if OS disks and data disks are found. They ignore
records generated by any other cloud plugins.

GCPCloud

Follow these steps to get started with auditing a GCP cloud environment.

	Follow the steps at
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
to create a service account key using the GCP Console and download it
as a file named keyfile.json.

	Then create a config file name cloudmarker.yaml with this
content:

plugins:
 mygcpcloud:
 plugin: cloudmarker.clouds.gcpcloud.GCPCloud
 params:
 key_file_path: keyfile.json
 zone: null

audits:
 mygcpaudit:
 clouds:
 - mygcpcloud
 stores:
 - filestore
 events:
 - firewallruleevent
 alerts:
 - filestore

run:
 - mygcpaudit

	Replace the value of zone key to the zone name in which your
resources reside. The zone name can be found in GCP Console [https://console.cloud.google.com/] > (select project) > Go to
Compute Engine. An example of zone name is us-east1-b. Note: We
are aware that the requirement of providing a specific zone name in
the config makes this plugin less flexible. This will be fixed in the
next release. The fix would allow the plugin to discover resources in
all zones automatically.

	Now enter this command to run Cloudmarker:

cloudmarker -n

	Now examine these files generated by Cloudmarker at
/tmp/cloudmarker/:

	mygcpaudit_mygcpcloud.json: This file contains the data
obtained from GCP cloud by the
cloudmarker.clouds.gcpcloud.GCPCloud plugin configured
under the mygcpaudit config key.

	mygcpaudit_firewallruleevent.json: This file contains insecure
firewall rules detected by the
cloudmarker.events.firewallruleevent.FirewallRuleEvent
plugin referred to with the key name firewallruleevent in the
built-in base config.

MockCloud

The MockCloud plugin has already been discussed in the Get
Started section once. A config key named mockcloud already
configures this plugin in the built-in base config as follows:

plugins:
 mockcloud:
 plugin: cloudmarker.clouds.mockcloud.MockCloud

There are no parameters specified for this plugin in the built-in base
config because this plugin class already has default keyword parameters.
See cloudmarker.clouds.mockcloud.MockCloud for the keyword
parameters with default values. By default, it generates 10 mock records
such that record['ext']['record_type'] alternate between 'foo'
and 'bar' where record represents each JSON object generated by
this plugin.

To override the default behaviour to, say, generate 20 records with
record types that alternate between ‘foo’, ‘bar’, and ‘baz’, we
could override the mockcloud config key defined in the built-in base
config. To do so, create a file named cloudmarker.yaml with the
following content only:

plugins:
 mockcloud:
 params:
 record_count: 20
 record_types:
 - foo
 - bar
 - baz

Then run Cloudmarker with this command:

cloudmarker -n

Note that we did not specify the plugin key under mockcloud here
because that is already available in the base config (see
cloudmarker.baseconfig). Similarly, we did not define audits
or run config keys here because they are also defined in the base
config. We only defined what we needed to override in the base config.

Event Plugins

The event plugins have been discussed in the sections for cloud plugins
above. Here is how the config keys for these plugins have been defined
in the base config (see cloudmarker.baseconfig):

plugins:
 ...

 firewallruleevent:
 plugin: cloudmarker.events.firewallruleevent.FirewallRuleEvent

 azvmosdiskencryptionevent:
 plugin: cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent

 azvmdatadiskencryptionevent:
 plugin: cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent

The ellipsis (...) in this example denote content omitted in the
above example for the sake of brevity.

FirewallRuleEvent

The FirewallRuleEvent plugin can be used with both AzCloud and
GCPCloud plugins. It looks for firewall rules that expose sensitive
ports to the entire Internet and generates events for them.

This plugin is offered by the
cloudmarker.events.firewallruleevent.FirewallRuleEvent plugin
class.

By default, it monitors for insecure exposure of a fixed set of TCP
ports. If that’s okay for you, there is no need to define this plugin
explicitly in the config file. The built-in base config key
firewallruleevent can be used as is. However, if there is a need for
monitoring a custom set of ports, then it can be overridden. Here is an
example configuration that monitors for insecure exposure of ports 22
and 3389 in Azure cloud:

plugins:
 myazcloud:
 plugin: cloudmarker.clouds.azcloud.AzCloud
 params:
 tenant: null
 client: null
 secret: null

 firewallruleevent:
 params:
 ports:
 - 22
 - 3389

audits:
 myazaudit:
 clouds:
 - myazcloud
 stores:
 - filestore
 events:
 - firewallruleevent
 alerts:
 - filestore

run:
 - myazaudit

Remember to replace the null values in the config above with actual
values before using this config.

AzVMOSDiskEncryptionEvent

The AzVMOSDiskEncryptionEvent plugin can be used with AzVM
plugin. It looks for unencrypted OS disks attached to Azure virtual
machines.

This plugin is offered by the
cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent
plugin class.

An example usage of this plugin is available in the AzVM section.
Since it only checks whether disks are encrypted or not (a binary
decision), it does not accept any parameters that can be configured in
config file. Therefore, it is recommended to use the built-in base
config key named azosdiskencryptionevent for this plugin.

AzVMDataDiskEncryptionEvent

The AzVMDataDiskEncryptionEvent plugin can be used with AzVM
plugin. It looks for unencrypted data disks attached to Azure virtual
machines.

This plugin is offered by the
cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent
plugin class.

An example usage of this plugin is available in the AzVM section.
Since it only checks whether disks are encrypted or not (a binary
decision), it does not accept any parameters that can be configured in
config file. Therefore, it is recommended to use the built-in base
config key named azdatadiskencryptionevent for this plugin.

MockEvent

The MockEvent plugin can be used with MockCloud plugin. The
MockCloud plugin generates data such that record['raw']['data']
has an integer value that increments in each record where record here
represents each record generated by MockCloud. The MockEvent
plugin when used checks the value of record['raw']['data'] in each
input record and generates an event if this value is a multiple of
some number (3 by default).

This plugin is offered by the
cloudmarker.events.mockevent.MockEvent plugin class.

We use MockCloud and MockEvent plugins together to test out the
store and alert plugins.

In case, we want the MockEvent plugin to look for a multiple of some
other number, say, 5, we can override the built-in base config as
follows:

plugins:
 mockevent:
 params:
 n: 5

Store Plugins

FileStore

We have been using the FileStore plugin already in the examples
above. This plugin is good for quick testing because we can see the
cloud data records and events written locally to a file that we can
easily inspect.

This plugin is offered by the
cloudmarker.stores.filestore.FileStore plugin class.

By default, it writes the output files to the /tmp/cloudmarker/
directory. Here is how it can be configured to write the output files to
another directory, say, ~/cloudmarker:

plugins:
 filestore:
 params:
 path: ~/cloudmarker

On running Cloudmarker with this config, we would see that the output
files have been written to ~/cloudmarker, i.e.,
$HOME/cloudmarker or in other words, the cloudmarker directory
under the home directory. Yes, FileStore performs tilde expansion [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_01]
to expand a path beginning with ~ to a user’s home directory as
mentioned here: os.path.expanduser() [https://docs.python.org/3/library/os.path.html#os.path.expanduser].

EsStore

The EsStore plugin can be used to send cloud data as well as
events to an Elasticsearch cluster.

This plugin is offered by the
cloudmarker.stores.esstore.EsStore plugin class.

In this section, we will use a Docker image of Elasticsearch to quickly
get started with configuring this plugin. Here are the steps to set up a
Docker container for Elasticsearch:

	Enter the following command to run a Docker container with
Elasticsearch instance:

docker run -p 9200:9200 -p 9300:9300 \
 -e 'discovery.type=single-node' \
 docker.elastic.co/elasticsearch/elasticsearch:7.0.1

	Ensure that Elasticsearch is able to index documents:

curl -H 'Content-Type: application/json' \
 -X PUT http://localhost:9200/foo/foo/1?pretty \
 -d '{"a": "apple", "b": "ball"}'

	Double-check that the document was indexed:

curl http://localhost:9200/foo/_search?pretty

Now that Elasticsearch is running in a Docker container and indexing
data, configure Cloudmarker to send data and events to it with the
following steps:

	Create cloudmarker.yaml with the following content to configure
Cloudmarker to send mock cloud records and mock events to
Elasticsearch:

audits:
 mockaudit:
 stores:
 - filestore
 - esstore
 alerts:
 - filestore
 - esstore

The above example is a very minimal config. It works because the
esstore plugin config key is defined in the built-in base config
and it sends data to a locally running Elasticsearch by default. Here
is what a more elaborate config would look like:

plugins:
 esstore:
 host: localhost
 port: 9200
 index: cloudmarker

audits:
 mockaudit:
 stores:
 - filestore
 - esstore
 alerts:
 - filestore
 - esstore

	Run Cloudmarker:

cloudmarker -n

	Confirm that mock cloud records and mock events are indexed in
Elasticsearch:

curl http://localhost:9200/cloudmarker/_search?pretty

MongoDBStore

The MongoDBStore plugin can be used to send cloud data as well as
events to a MongoDB collection.

This plugin is offered by the
cloudmarker.stores.mongodbstore.MongoDBStore plugin class.

In this section, we will use a Docker image of MongoDB to quickly get
started with configuring this plugin. Here are the steps to set up a
Docker container for MongoDB:

	Enter the following commands to run a Docker container with
MongoDB instance:

docker rm mongo; docker run --name mongo -p 27017:27017 mongo

	Ensure that we can insert data into MongoDB:

docker exec -it mongo mongo foo --eval 'db.bar.insert({"a": "apple"})'

	Double-check that the data was inserted:

docker exec -it mongo mongo foo --eval 'db.bar.find()'

Now that MongoDB is running in a Docker container, configure Cloudmarker
to send data to it with these steps:

	Create cloudmarker.yaml with the following content to configure
Cloudmarker to send mock cloud records and mock events to
MongoDB:

audits:
 mockaudit:
 stores:
 - filestore
 - mongodbstore
 alerts:
 - filestore
 - mongodbstore

The above example is a very minimal config. It works because the
mongodbstore plugin config key is defined in the built-in base
config and it sends data to a locally running MongoDB by default.
Here is what a more elaborate config would look like:

plugins:
 mongodbstore:
 host: localhost
 port: 27017
 db: cloudmarker
 collection: cloudmarker
 username: null
 password: null

audits:
 mockaudit:
 stores:
 - filestore
 - mongodbstore
 alerts:
 - filestore
 - mongodbstore

If the MongoDB instance requires user authentication, then the
username and password config keys should be set to the
appropriate values.

	Run Cloudmarker:

cloudmarker -n

	Confirm that mock cloud records and mock events are indexed in
Elasticsearch:

docker exec -it mongo mongo cloudmarker --eval 'db.cloudmarker.find()'

SplunkHECStore

The SplunkHECStore plugin can be used to send cloud data as well as
events to a Splunk HTTP Event Collector (HEC).

This plugin is offered by the
cloudmarker.stores.splunkhecstore.SplunkHECStore plugin class.

In this section, we will use a Docker image of Splunk to quickly get
started with configuring this plugin. Here are the steps to set up
a Docker container for Splunk:

	Enter the following command to run a Docker container with Splunk
instance with HTTP Event Collector (HEC):

docker run -e 'SPLUNK_START_ARGS=--accept-license' \
 -e 'SPLUNK_PASSWORD=admin123' \
 -e 'SPLUNK_HEC_TOKEN=token123' \
 -p 8000:8000 -p 8088:8088 splunk/splunk

	Ensure that Splunk HEC is able to receive events:

curl -k https://localhost:8088/services/collector/event \
 -H 'Authorization: Splunk token123' \
 -d '{"event": "hello, world"}'

	To double-check that Splunk received the event, visit
http://localhost:8000/ with a web browser.

	Then log into Splunk with username as admin and password as the
password specified in the docker command in step 1 above.

	Click on “Search & Reporting” on the left sidebar.

	In the search box, enter * (asterisk) and click the search button.
One event with the string hello, world should appear in the
result.

Now that Splunk is running in a Docker container and accepting events
via HEC, configure Cloudmarker to send data and events to it with the
following steps:

	Create cloudmarker.yaml with the following content to configure
Cloudmarker to send mock cloud records and mock events to Splunk:

plugins:
 splunkstore:
 plugin: cloudmarker.stores.splunkhecstore.SplunkHECStore
 params:
 uri: https://localhost:8088/services/collector
 token: token123
 index: main
 ca_cert: false

audits:
 mockaudit:
 stores:
 - filestore
 - splunkstore

	Run Cloudmarker with this configuration:

cloudmarker -n

	Visit http://localhost:8000/ with a web browser.

	Then log into Splunk with username as admin and password as the
password specified in the docker command in step 1 above.

	Click on “Search & Reporting” on the left sidebar.

	In the search box, enter * (asterisk) and click the search button.
There should be many new events now.

	In the search box, enter the following query to see the mock cloud
records:

index=main com.record_type=mock

There should 10 records in the results.

	In the search box, enter the following query to see the mock events:

index=main com.record_type=mock_event

There should be 4 events in the results.

	In the search box, enter the following query to see the event
description fields in a table format:

index=main com.record_type=mock_event | table com.description

Alert Plugins

All of the store plugins discussed above can also be used as alert
plugins. Additionally, there are a few plugins that are specialized as
alert plugins only and do not serve very well as store plugins. Only
these plugins are discussed in this section.

EmailAlert

The EmailAlert plugin can be used to send events to email recipients
via SMTP.

This plugin is offered by the
cloudmarker.alerts.emailalert.EmailAlert plugin class.

The EmailAlert parameters are same as that of the
cloudmarker.util.send_email() function, so read its API
documentation to learn about the parameters this plugin accepts.

Perform the following steps to configure Cloudmarker to send mock events
as email alerts:

	Create a config file named cloudmarker.yaml in the current
directory with the following content:

plugins:
 emailalert:
 plugin: cloudmarker.alerts.emailalert.EmailAlert
 params:
 from_addr: Cloudmarker <cloudmarker@example.com>
 to_addrs:
 - user1@example.com
 - user2@example.com
 subject: Cloudmarker Alert
 host: smtp.example.com

audits:
 mockaudit:
 alerts:
 - filestore
 - emailalert

	Set the values of from_addr and to_addrs appropriately.

	If authentication is required, add username and password
parameters. See cloudmarker.send_email() documentation for
details.

	If the SMTP host does not support SSL, then add ssl_mode
parameter and set its value to starttls if the SMTP host supports
STARTTLS. If the SMTP host supports neither SSL nor
STARTTLS, set its value to disable.

	If the SMTP host is listening on a non-standard port, then set the
port parameter to an integer value representing the expected port
number. If the SMTP host is listening on a standard port, then there
is no need to set this parameter. It has a default value of 0
which automatically selects the appropriate port based on the value
of ssl_mode parameter.

	Run Cloudmarker with this configuration:

cloudmarker -n

	Check the configured recipients’ inboxes to confirm that the email
alerts have been received.

SlackAlert

The SlackAlert plugin can be used to send events to Slack users via
a Slack bot.

This plugin is offered by the
cloudmarker.alerts.slackalert.SlackAlert plugin class.

Perform the following steps to configure Cloudmarker to send mock events
as alerts via Slack:

	Create a config file named cloudmarker.yaml in the current
directory with the following content:

plugins:
 slackalert:
 plugin: cloudmarker.alerts.slackalert.SlackAlert
 params:
 bot_user_token: null
 to:
 - user1@example.com
 - user2@example.com
 text: Attention - Cloudmarker Alert

audits:
 mockaudit:
 alerts:
 - filestore
 - slackalert

	Change the value of bot_user_token key from null to actual
token of the Slack bot in the config file.

	Change the vlaue of to key from example users to actual Slack
users.

	Now, enter this command to run Cloudmarker:

cloudmarker -n

	The mock events would be sent to the configured Slack users as a JSON
snippet.

Framework

Schedule

In the built-in base config (see cloudmarker.baseconfig),
there is a schedule config key that specifies the local time (in
24-hour notation) at which Cloudmarker should start running audits every
day. This schedule is honoured when Cloudmarker is run without the
-n or -now option as follows:

cloudmarker

Logger

In the built-in base config (see cloudmarker.baseconfig),
there is a logger config key that specifies an elaborate logging
configuration. This can be overridden in a config file to customize the
logger. For example, by default, the log files are written to
/tmp/cloudmarker.log. If we want to override this location to, say,
log/cloudmarker.log, we can define a config file named
cloudmarker.yaml like this:

logger:
 handlers:
 file:
 filename: log/cloudmarker.log

To test this configuration, enter these commands:

mkdir -p log
cloudmarker -n
cat log/cloudmarker.log

To see the default logger config, see cloudmarker.baseconfig.
To understand more about what each of the config keys under logger
mean, see the Python standard library logging documentation:
Configuration dictionary schema [https://docs.python.org/3/library/logging.config.html#logging-config-dictschema].

Email

When Cloudmarker is made to run in scheduled mode, it could be useful to
get email notifications about when the audits start and the audits stop.
The email configuration for such audit emails can be specified under a
config key named email. Note that this should be a top-level key in
the config file, i.e., it should be at the same level as the audits
and run keys.

The value for the email config key should be similar to the value of
params key of an email alert. See EmailAlert section for more
details on this. Here is an example:

emailalert:
 from_addr: Cloudmarker <cloudmarker@example.com>
 to_addrs:
 - user1@example.com
 - user2@example.com
 subject: Cloudmarker Alert
 host: smtp.example.com

With this configuration, Cloudmarker sends four types of emails:

	An email when all configured audits begin.

	An email when all configured audits end.

	An email when each configured audit begins.

	An email when each configured audit ends.

Therefore, if there are 3 audits configured under the audits
config key, then a total of 8 emails are sent: 1 begin audits email, 1
end audits email, 3 begin audit emails (one for each audit), and 3 end
audit emails (one for each audit).

Cloudmarker API

	cloudmarker package
	Subpackages
	cloudmarker.alerts package
	Submodules

	cloudmarker.alerts.emailalert module

	cloudmarker.alerts.slackalert module

	cloudmarker.clouds package
	Submodules

	cloudmarker.clouds.azcloud module

	cloudmarker.clouds.azvm module

	cloudmarker.clouds.gcpcloud module

	cloudmarker.clouds.mockcloud module

	cloudmarker.events package
	Submodules

	cloudmarker.events.azvmdatadiskencryptionevent module

	cloudmarker.events.azvmosdiskencryptionevent module

	cloudmarker.events.firewallruleevent module

	cloudmarker.events.mockevent module

	cloudmarker.stores package
	Submodules

	cloudmarker.stores.esstore module

	cloudmarker.stores.filestore module

	cloudmarker.stores.mongodbstore module

	cloudmarker.stores.splunkhecstore module

	Submodules

	cloudmarker.baseconfig module

	cloudmarker.manager module

	cloudmarker.util module

	cloudmarker.workers module

cloudmarker package

Cloudmarker - Cloud security monitoring framework.

Subpackages

	cloudmarker.alerts package
	Submodules

	cloudmarker.alerts.emailalert module

	cloudmarker.alerts.slackalert module

	cloudmarker.clouds package
	Submodules

	cloudmarker.clouds.azcloud module

	cloudmarker.clouds.azvm module

	cloudmarker.clouds.gcpcloud module

	cloudmarker.clouds.mockcloud module

	cloudmarker.events package
	Submodules

	cloudmarker.events.azvmdatadiskencryptionevent module

	cloudmarker.events.azvmosdiskencryptionevent module

	cloudmarker.events.firewallruleevent module

	cloudmarker.events.mockevent module

	cloudmarker.stores package
	Submodules

	cloudmarker.stores.esstore module

	cloudmarker.stores.filestore module

	cloudmarker.stores.mongodbstore module

	cloudmarker.stores.splunkhecstore module

Submodules

cloudmarker.baseconfig module

Base configuration.

	
cloudmarker.baseconfig.config_yaml

	Base configuration as YAML code.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cloudmarker.baseconfig.config_dict

	Base configuration as Python dictionary.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Here is the complete base configuration present as a string in the
config_yaml attribute:

Base configuration
plugins:
 mockcloud:
 plugin: cloudmarker.clouds.mockcloud.MockCloud

 filestore:
 plugin: cloudmarker.stores.filestore.FileStore

 esstore:
 plugin: cloudmarker.stores.esstore.EsStore

 mongodbstore:
 plugin: cloudmarker.stores.mongodbstore.MongoDBStore

 firewallruleevent:
 plugin: cloudmarker.events.firewallruleevent.FirewallRuleEvent

 azvmosdiskencryptionevent:
 plugin: cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent

 azvmdatadiskencryptionevent:
 plugin: cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent

 mockevent:
 plugin: cloudmarker.events.mockevent.MockEvent

audits:
 mockaudit:
 clouds:
 - mockcloud
 stores:
 - filestore
 events:
 - mockevent
 alerts:
 - filestore

run:
 - mockaudit

logger:
 version: 1

 disable_existing_loggers: false

 formatters:
 simple:
 format: >-
 %(asctime)s [%(process)s] %(levelname)s
 %(name)s:%(lineno)d - %(message)s
 datefmt: "%Y-%m-%d %H:%M:%S"

 handlers:
 console:
 class: logging.StreamHandler
 formatter: simple
 stream: ext://sys.stdout

 file:
 class: logging.handlers.TimedRotatingFileHandler
 formatter: simple
 filename: /tmp/cloudmarker.log
 when: midnight
 encoding: utf8
 backupCount: 5

 loggers:
 adal-python:
 level: WARNING

 root:
 level: INFO
 handlers:
 - console
 - file

schedule: "00:00"

cloudmarker.manager module

Manager of worker subprocesses.

This module invokes the worker subprocesses that perform the cloud
security monitoring tasks. Each worker subprocess wraps around a cloud,
store, event, or alert plugin and executes the plugin in a separate
subprocess.

	
class cloudmarker.manager.Audit(audit_key, audit_version, config)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Audit manager.

This class encapsulates a set of worker subprocesses and worker
input queues for a single audit configuration.

Create an instance of Audit from configuration.

A single audit definition (from a list of audit definitions
under the audits key in the configuration) is instantiated.
Each audit definition contains lists of cloud plugins, store
plugins, event plugins, and alert plugins. These plugins are
instantiated and multiprocessing queues are set up to take
records from one plugin and feed them to another plugin as per
the audit workflow.

	Parameters

	
	audit_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key name for an audit configuration. This
key is looked for in config['audits'].

	audit_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit version string.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Configuration dictionary. This is the
entire configuration dictionary that contains
top-level keys named clouds, stores, events,
alerts, audits, run, etc.

	
join()

	Wait until all workers terminate.

	
start()

	Start audit by starting all workers.

	
cloudmarker.manager.main()

	Run the framework based on the schedule.

cloudmarker.util module

Utility functions.

	
exception cloudmarker.util.PluginError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Represents an error while loading a plugin.

	
exception cloudmarker.util.PluralizeError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Represents an error while converting a word to plural form.

	
cloudmarker.util.expand_port_ranges(port_ranges)

	Expand port_ranges to a set [https://docs.python.org/3/library/stdtypes.html#set] of ports.

Examples

Here is an example usage of this function:

>>> from cloudmarker import util
>>> ports = util.expand_port_ranges(['22', '3389', '8080-8085'])
>>> print(ports == {22, 3389, 8080, 8081, 8082, 8083, 8084, 8085})
True
>>> ports = util.expand_port_ranges(['8080-8084', '8082-8086'])
>>> print(ports == {8080, 8081, 8082, 8083, 8084, 8085, 8086})
True

Note that in a port range of the form m-n, both m and
n are included in the expanded port set. If m > n, we
get an empty port set.

>>> ports = util.expand_port_ranges(['8085-8080'])
>>> print(ports == set())
True

If an invalid port range is found, it is ignored.

>>> ports = util.expand_port_ranges(['8080', '8081a', '8082'])
>>> print(ports == {8080, 8082})
True
>>> ports = util.expand_port_ranges(['7070-7075', '8080a-8085'])
>>> print(ports == {7070, 7071, 7072, 7073, 7074, 7075})
True

	Parameters

	port_ranges (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings where each string is a
port number (e.g., '80') or port range (e.g., 80-89).

	Returns

	
	A set of integers that represent the ports specified

	by port_ranges.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
cloudmarker.util.friendly_list(items, conjunction='and')

	Translate a list of items to a human-friendly list of items.

Examples

Here are a few example usages of this function:

>>> from cloudmarker import util
>>> util.friendly_list([])
'none'
>>> util.friendly_list(['apple'])
'apple'
>>> util.friendly_list(['apple', 'ball'])
'apple and ball'
>>> util.friendly_list(['apple', 'ball', 'cat'])
'apple, ball, and cat'
>>> util.friendly_list(['apple', 'ball'], 'or')
'apple or ball'
>>> util.friendly_list(['apple', 'ball', 'cat'], 'or')
'apple, ball, or cat'

	Parameters

	items (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of items.

	Returns

	
	Human-friendly list of items with correct placement of

	comma and conjunction.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cloudmarker.util.friendly_string(technical_string)

	Translate a technical string to a human-friendly phrase.

In most of our code, we use succint strings to express various
technical details, e.g., 'gcp' to express Google Cloud Platform.
However these technical strings are not ideal while writing
human-friendly messages such as a description of a security issue
detected or a recommendation to remediate such an issue.

This function helps in converting such technical strings into
human-friendly phrases that can be used in strings intended to be
read by end users (e.g., security analysts responsible for
protecting their cloud infrastructure) of this project.

Examples

Here are a few example usages of this function:

>>> from cloudmarker import util
>>> util.friendly_string('azure')
'Azure'
>>> util.friendly_string('gcp')
'Google Cloud Platform (GCP)'

	Parameters

	technical_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – A technical string.

	Returns

	
	Human-friendly string if a translation from a technical

	string to friendly string exists; the same string otherwise.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cloudmarker.util.load_config(config_paths)

	Load configuration from specified configuration paths.

	Parameters

	config_paths (list [https://docs.python.org/3/library/stdtypes.html#list]) – Configuration paths.

	Returns

	A dictionary of configuration key-value pairs.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
cloudmarker.util.load_plugin(plugin_config)

	Construct an object with specified plugin class and parameters.

The plugin_config parameter must be a dictionary with the
following keys:

	plugin: The value for this key must be a string that
represents the fully qualified class name of the plugin. The
fully qualified class name is in the dotted notation, e.g.,
pkg.module.ClassName.

	params: The value for this key must be a dict [https://docs.python.org/3/library/stdtypes.html#dict] that
represents the parameters to be passed to the __init__ method
of the plugin class. Each key in the dictionary represents the
parameter name and each value represents the value of the
parameter.

Example

Here is an example usage of this function:

>>> from cloudmarker import util
>>> plugin_config = {
... 'plugin': 'cloudmarker.clouds.mockcloud.MockCloud',
... 'params': {
... 'record_count': 4,
... 'record_types': ('baz', 'qux')
... }
... }
...
>>> plugin = util.load_plugin(plugin_config)
>>> print(type(plugin))
<class 'cloudmarker.clouds.mockcloud.MockCloud'>
>>> for record in plugin.read():
... print(record['raw']['data'],
... record['ext']['record_type'],
... record['com']['record_type'])
...
0 baz mock
1 qux mock
2 baz mock
3 qux mock

	Parameters

	plugin_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Plugin configuration dictionary.

	Returns

	An object of type mentioned in the plugin parameter.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	Raises

	PluginError – If plugin class name is invalid.

	
cloudmarker.util.merge_dicts(*dicts)

	Recursively merge dictionaries.

The input dictionaries are not modified. Given any
number of dicts, deep copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.

Example

Here is an example usage of this function:

>>> from cloudmarker import util
>>> a = {'a': 'apple', 'b': 'ball'}
>>> b = {'b': 'bat', 'c': 'cat'}
>>> c = util.merge_dicts(a, b)
>>> print(c == {'a': 'apple', 'b': 'bat', 'c': 'cat'})
True

	Parameters

	*dicts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Variable length dictionary list

	Returns

	Merged dictionary

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
cloudmarker.util.parse_cli(args=None)

	Parse command line arguments.

	Parameters

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of command line arguments.

	Returns

	Parsed command line arguments.

	Return type

	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
cloudmarker.util.pluralize(count, word, *suffixes)

	Convert word to plural form if count is not 1.

Examples

In the simplest form usage, this function just adds an 's'
to the input word when the plural form needs to be used.

>>> from cloudmarker import util
>>> util.pluralize(0, 'apple')
'apples'
>>> util.pluralize(1, 'apple')
'apple'
>>> util.pluralize(2, 'apple')
'apples'

The plural form of some words cannot be formed merely by adding
an 's' to the word but requires adding a different suffix.
For such cases, provide an additional argument that specifies
the correct suffix.

>>> util.pluralize(0, 'potato', 'es')
'potatoes'
>>> util.pluralize(1, 'potato', 'es')
'potato'
>>> util.pluralize(2, 'potato', 'es')
'potatoes'

The plural form of some words cannot be formed merely by adding
a suffix but requires removing a suffix and then adding a new
suffix. For such cases, provide two additional arguments: one
that specifies the suffix to remove from the input word and
another to specify the suffix to add.

>>> util.pluralize(0, 'sky', 'y', 'ies')
'skies'
>>> util.pluralize(1, 'sky', 'y', 'ies')
'sky'
>>> util.pluralize(2, 'sky', 'y', 'ies')
'skies'

	Returns

	
	The input word itself if count is 1; plural

	form of the word otherwise.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cloudmarker.util.send_email(from_addr, to_addrs, subject, content, host='', port=0, ssl_mode='ssl', username='', password='', debug=0)

	Send email message.

When ssl_mode` is ``'ssl' and host is uspecified or
specified as '' (the default), the local host is used. When
ssl_mode is 'ssl' and port is unspecified or specified
as 0, the standard SMTP-over-SSL port, i.e., port 465, is used.
See smtplib.SMTP_SSL [https://docs.python.org/3/library/smtplib.html#smtplib.SMTP_SSL] documentation for more details on
this.

When ssl_mode is 'ssl'` and if ``host or port are
unspecified, i.e., if host or port are '' and/or 0,
respectively, the OS default behavior is used. See
smtplib.SMTP [https://docs.python.org/3/library/smtplib.html#smtplib.SMTP] documentation for more details on this.

We recommend these parameter values:

	Leave ssl_mode unspecified (thus 'ssl' by default) if
your SMTP server supports SSL.

	Set ssl_mode to 'starttls' explicitly if your SMTP server
does not support SSL but it supports STARTTLS.

	Set ssl_mode to 'disable' explicitly if your SMTP server
supports neither SSL nor STARTTLS.

	Set host to the SMTP hostname or address explicitly.

	Leave port unspecified (thus 0 by default), so that the
appropriate port is chosen automatically.

With these recommendations, this function should do the right thing
automatically, i.e., connect to port 465 if use_ssl is
unspecified or False and port 25 if use_ssl is True.

Note that in case of SMTP, there are two different encryption
protocols in use:

	SSL/TLS (or implicit SSL/TLS): SSL/TLS is used from the beginning
of the connection. This occurs typically on port 465. This is
enabled by default (ssl_mode as 'ssl').

	STARTTLS (or explicit SSL/TLS): The SMTP session begins as a
plaintext session. Then the client (this function in this case)
makes an explicit request to switch to SSL/TLS by sending the
STARTTLS command to the server. This occurs typically on port
25 or port 587. Set ssl_mode to 'starttls' to enable this
behaviour

If username is unspecified or specified as an empty string, no
SMTP authentication is done. If username is specified as a
non-empty string, then SMTP authentication is done.

	Parameters

	
	from_addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sender’s email address.

	to_addrs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of str [https://docs.python.org/3/library/stdtypes.html#str] objects where each
str [https://docs.python.org/3/library/stdtypes.html#str] object is a recipient’s email address.

	subject (str [https://docs.python.org/3/library/stdtypes.html#str]) – Email subject.

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – Email content.

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – SMTP host.

	port (int [https://docs.python.org/3/library/functions.html#int]) – SMTP port.

	ssl_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – SSL mode to use: 'ssl' for SSL/TLS
connection (the default), 'starttls' for STARTTLS, and
'disable' to disable SSL.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – SMTP username.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – SMTP password.

	debug (int [https://docs.python.org/3/library/functions.html#int] or bool [https://docs.python.org/3/library/functions.html#bool]) – Debug level to pass to
SMTP.set_debuglevel() to debug an SMTP session. Set to
0 (the default) or False to disable debugging. Set
to 1 or True to see SMTP messages. Set to 2 to
see timestamped SMTP messages.

	
cloudmarker.util.wrap_paragraphs(text, width=70)

	Wrap each paragraph in text to the specified width.

If the text is indented with any common leading whitespace, then
that common leading whitespace is removed from every line in text.
Further, any remaining leading and trailing whitespace is removed.
Finally, each paragraph is wrapped to the specified width.

	Parameters

	width (int [https://docs.python.org/3/library/functions.html#int]) – Maximum length of wrapped lines.

cloudmarker.workers module

Worker functions.

The functions in this module wrap around plugin classes such that these
worker functions can be specified as the target parameter while
launching a new subprocess with multiprocessing.Process [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process].

Each worker function can run as a separate subprocess. While wrapping
around a plugin class, each worker function creates the multiprocessing
queues necessary to pass records from one plugin class to another.

	
cloudmarker.workers.alert_worker(audit_key, audit_version, plugin_key, plugin, input_queue)

	Worker function for alert plugins.

This function behaves like cloudmarker.workers.store_worker().
See its documentation for details.

	Parameters

	
	audit_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit key name in configuration.

	audit_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit version string.

	plugin_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Plugin key name in configuration.

	plugin (object [https://docs.python.org/3/library/functions.html#object]) – Alert plugin object.

	input_queue (multiprocessing.Queue [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue]) – Queue to read records from.

	
cloudmarker.workers.cloud_worker(audit_key, audit_version, plugin_key, plugin, output_queues)

	Worker function for cloud plugins.

This function expects the plugin object to implement a read
method that yields records. This function calls this read method
to retrieve records and puts each record into each queue in
output_queues.

	Parameters

	
	audit_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit key name in configuration.

	audit_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit version string.

	plugin_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Plugin key name in configuration.

	plugin (object [https://docs.python.org/3/library/functions.html#object]) – Cloud plugin object.

	output_queues (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of multiprocessing.Queue [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue]
objects to write records to.

	
cloudmarker.workers.event_worker(audit_key, audit_version, plugin_key, plugin, input_queue, output_queues)

	Worker function for event plugins.

This function expects the plugin object to implement a eval
method that accepts a single record as a parameter and yields one or
more records, and a done method to perform cleanup work in the
end.

This function gets records from input_queue and passes each
record to the eval method of plugin. Then it puts each
record yielded by the eval method into each queue in
output_queues.

When there are no more records in the input_queue, i.e., once
None is found in the input_queue, this function calls the
done method of the plugin to indicate that record
processing is over.

	Parameters

	
	audit_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit key name in configuration.

	audit_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit version string.

	plugin_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Plugin key name in configuration.

	plugin (object [https://docs.python.org/3/library/functions.html#object]) – Store plugin object.

	input_queue (multiprocessing.Queue [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue]) – Queue to read records from.

	output_queues (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of multiprocessing.Queue [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue]
objects to write records to.

	
cloudmarker.workers.store_worker(audit_key, audit_version, plugin_key, plugin, input_queue)

	Worker function for store plugins.

This function expects the plugin object to implement a
write method that accepts a single record as a parameter and a
done method to perform cleanup work in the end.

This function gets records from input_queue and passes each
record to the write method of plugin.

When there are no more records in the input_queue, i.e., once
None is found in the input_queue, this function calls the
done method of the plugin to indicate that record
processing is over.

	Parameters

	
	audit_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit key name in configuration.

	audit_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Audit version string.

	plugin_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Plugin key name in configuration.

	plugin (object [https://docs.python.org/3/library/functions.html#object]) – Store plugin object.

	input_queue (multiprocessing.Queue [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue]) – Queue to read records from.

cloudmarker.alerts package

A package for alert plugins packaged with this project.

This package contains alert plugins that are packaged as part of this
project. The alert plugins implement a function named write() that
accepts input records and typically sends them to an alerting
destination. The alert plugins also implement a function named done
that perform cleanup work when called.

Note that the alert plugins implement the exact same interface as the
store plugins in the cloudmarker.stores package. So a store
plugin can usually serve equally well as an alert plugin, and vice
versa. In fact, some of the store plugins such as
cloudmarker.stores.esstore.EsStore and
cloudmarker.stores.mongodbstore.MongoDBStore are indeed used as
alert plugins too because security events can be alerted by storing them
in an Elasticsearch index or MongoDB collection.

If a plugin can serve as both a store plugin and an alert plugin, we
keep them in the cloudmarker.stores package. If a plugin makes
sense only as an alert plugin, we keep them in this
cloudmarker.alerts package.

Submodules

cloudmarker.alerts.emailalert module

Email alert plugin.

	
class cloudmarker.alerts.emailalert.EmailAlert(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A plugin to send email alerts.

Create an instance of EmailAlert plugin.

This class accepts the same arguments as
cloudmarker.util.send_email().

The content argument is not honoured. Even if a content
argument is provided, it is ignored by this class because this
class defines its own content from the event records it receives
in its write() method.

	
done()

	Send the buffered events as an email alert.

	
write(record)

	Save event record in a buffer.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – An event record.

cloudmarker.alerts.slackalert module

Alerter to send Slack messages for identified anomalies.

	
class cloudmarker.alerts.slackalert.SlackAlert(bot_user_token, to, text, temp_file='/tmp/cloudmarker/slackalert.json')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Alert plugin to send Slack alerts.

Initialize the class:SlackAlert.

	Parameters

	
	bot_user_token (string) – Token for Slack bot user.

	to (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of recipients (string) to send Slack alert to.

	text (string) – Message body.

	temp_file (string) – Name of file to be used to save interim JSON
record which will be used to attach as report to Slack message.

	
done()

	Write the JSON data to a file and send alert.

This function writes the JSON data to a file. The created JSON file
will be used by self._post_message method to send the file as an
attachment.

	
write(record)

	Write records to in memory buffer.

This method will collate all the records in the list self._slack_report
only.

	Parameters

	record (list [https://docs.python.org/3/library/stdtypes.html#list]) – Records generated by Events plugin.

cloudmarker.clouds package

A package for cloud plugins packaged with this project.

This package contains cloud plugins that are packaged as part of this
project. The cloud plugins implement a function named read() that
connects to remote data sources, typically cloud APIs, and yield
data records.

Submodules

cloudmarker.clouds.azcloud module

Microsoft Azure cloud plugin to read Azure infrastructure data.

This module defines the AzCloud class that retrieves data
from Microsoft Azure.

	
class cloudmarker.clouds.azcloud.AzCloud(tenant, client, secret, _max_subs=0, _max_recs=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Azure cloud plugin.

Create an instance of AzCloud plugin.

Note: The _max_subs and _max_recs arguments should be
used only in the development-test-debug phase. They should not
be used in production environment. This is why we use the
convention of beginning their names with underscore.

	Parameters

	
	tenant (str [https://docs.python.org/3/library/stdtypes.html#str]) – Azure subscription tenant ID.

	client (str [https://docs.python.org/3/library/stdtypes.html#str]) – Azure service principal application ID.

	secret (str [https://docs.python.org/3/library/stdtypes.html#str]) – Azure service principal password.

	_max_subs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of subscriptions to fetch
data for if the value is greater than 0.

	_max_recs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of records of each type to
fetch under each subscription.

	
done()

	Perform clean up tasks.

Currently, this method does nothing because there are no clean
up tasks associated with the AzCloud plugin. This
may change in future.

	
read()

	Return an Azure cloud infrastructure configuration record.

	Yields

	dict – An Azure cloud infrastructure configuration record.

cloudmarker.clouds.azvm module

Microsoft Azure virtual machine plugin to read Azure virtual machine data.

This module defines the AzVM class that retrieves virtula machine data
from Microsoft Azure.

	
class cloudmarker.clouds.azvm.AzVM(tenant, client, secret, _max_subs=0, _max_recs=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Azure Virtual Machine plugin.

Create an instance of AzVM plugin.

Note: The _max_subs and _max_recs arguments should be
used only in the development-test-debug phase. They should not
be used in production environment. This is why we use the
convention of beginning their names with underscore.

	Parameters

	
	tenant (str [https://docs.python.org/3/library/stdtypes.html#str]) – Azure subscription tenant ID.

	client (str [https://docs.python.org/3/library/stdtypes.html#str]) – Azure service principal application ID.

	secret (str [https://docs.python.org/3/library/stdtypes.html#str]) – Azure service principal password.

	_max_subs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of subscriptions to fetch
data for if the value is greater than 0.

	_max_recs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of virtual machines records
to fetch for each subscription.

	
done()

	Perform clean up tasks.

Currently, this method does nothing because there are no clean
up tasks associated with the AzVM plugin. This
may change in future.

	
read()

	Return an Azure virtual machine record.

	Yields

	dict – An Azure virtual machine record.

cloudmarker.clouds.gcpcloud module

Google Cloud Platform (GCP) plugin to read GCP infrastructure data.

This module defines the GCPCloud class that retrieves data from
Google Cloud Platform.

	
class cloudmarker.clouds.gcpcloud.GCPCloud(key_file_path, zone)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

GCP cloud plugin.

Create an instance of GCPCloud plugin.

	Parameters

	
	key_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the service account
key file for a project.

	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – Zone of GCP Project, e.g., us-east1-b.

	
done()

	Perform clean up tasks.

Currently, this method does nothing because there are no clean
up tasks associated with the GCPCloud plugin. This
may change in future.

	
read()

	Return a GCP infrastructure configuration record.

	Yields

	dict – Firewall rule or VM instance configuration data.

cloudmarker.clouds.mockcloud module

Mock cloud plugin for testing purpose.

	
class cloudmarker.clouds.mockcloud.MockCloud(record_count=10, record_types=('foo', 'bar'))

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mock cloud plugin for testing purpose.

Create an instance of MockCloud plugin.

This plugin generates mock records. The records generated
contains three fields under three top-level keys that we also
call “bucket keys”: raw, data, and type, as shown in
the example below:

Example

Here is an example that shows that the records generated by
this plugin with the default initialization parameters:

>>> from cloudmarker.clouds import mockcloud
>>> cloud = mockcloud.MockCloud()
>>> for record in cloud.read():
... print(record['raw']['data'],
... record['ext']['record_type'],
... record['com']['record_type'])
...
0 foo mock
1 bar mock
2 foo mock
3 bar mock
4 foo mock
5 bar mock
6 foo mock
7 bar mock
8 foo mock
9 bar mock

The three top-level keys, raw, ext, and com
represent the names of the three buckets under which various
data attributes are kept. While this is only a mock plugin, but
in an actual cloud plugin implementation, the meaning of these
buckets are as follows:

	raw: The value for the raw key is a dict [https://docs.python.org/3/library/stdtypes.html#dict] object
that represents the actual data object obtained from a cloud
in its original form. No modifications should be done to the
object obtained from the cloud.

	ext: The value for the ext key is a dict [https://docs.python.org/3/library/stdtypes.html#dict] object
which contains key-value pairs for any additional
cloud-specific metadata that need to be stored. The data in
this bucket is also known as extended metadata.

	com: The value for the com key is a dict [https://docs.python.org/3/library/stdtypes.html#dict] object
which contains key-value pairs for any metadata that is common
to all clouds.

	Parameters

	
	record_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of mock records to generate.

	record_types (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of strings that represent the
different record types to be generated.

	
done()

	Perform cleanup work.

Since this is a mock plugin, this method does nothing. However,
a typical cloud plugin may or may not need to perform cleanup
work in this method depending on its nature of work.

	
read()

	Generate a record.

This method creates and yields mock records.

In actual cloud implementations, this method would typically
connect to the cloud, retrieve JSON objects using the cloud API,
and yield those objects as dict [https://docs.python.org/3/library/stdtypes.html#dict] objects.

	Yields

	dict – Mock record.

cloudmarker.events package

A package for event plugins packaged with this project.

This package contains event plugins that are packaged as part of this
project. The event plugins implement a function named eval that
accepts one record as parameter, evaluates the record, and generates
zero or more event records for each input record. The event plugins also
implement and a function named done that perform cleanup work when
called.

Submodules

cloudmarker.events.azvmdatadiskencryptionevent module

Microsoft Azure VM Data disk encryption event.

This module defines the AzVMDataDiskEncryptionEvent class that
identifies an unencrypted Azure VM data disk. This plugin works on the
virtual machine properties found in the com bucket of
virtual_machine records.

	
class cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Az VM Data disk encryption event plugin.

Create an instance of AzVMDataDiskEncryptionEvent.

	
done()

	Perform cleanup work.

Currently, this method does nothing. This may change in future.

	
eval(record)

	Evaluate Azure virtual machine to check for unencrypted data disks.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A virtual machine record.

	Yields

	dict – An event record representing an unencrypted data disk
of an Azure virtual machine

cloudmarker.events.azvmosdiskencryptionevent module

Microsoft Azure VM OS disk encryption event.

This module defines the AzVMOSDiskEncryptionEvent class that
identifies an unencrypted Azure OS disk. This plugin works on the
virtual machine properties found in the com bucket of
virtual_machine records.

	
class cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Az VM OS disk encryption event plugin.

Create an instance of AzVMOSDiskEncryptionEvent.

	
done()

	Perform cleanup work.

Currently, this method does nothing. This may change in future.

	
eval(record)

	Evaluate Azure virtual machine to check for unencrypted OS disk.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A virtual machine record.

	Yields

	dict – An event record representing an unencrypted OS disk
of an Azure virtual machine

cloudmarker.events.firewallruleevent module

Firewall rule event.

This module defines the FirewallRuleEvent class that identifies
weak firewall rules. This plugin works on the firewall properties found
in the com bucket of firewall rule records.

	
class cloudmarker.events.firewallruleevent.FirewallRuleEvent(ports=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Firewall rule event plugin.

Create an instance of FirewallRuleEvent plugin.

	Parameters

	ports (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings that represent the ports to
be checked for insecure exposure to the Internet. If
None is specified or if unspecified, then this
plugin defaults to checking ports 22, 3389, 1433, 1521,
3306, and 5432 for insecure exposure.

	
done()

	Perform cleanup work.

Currently, this method does nothing. This may change in future.

	
eval(record)

	Evaluate firewall rules to check for insecurely exposed ports.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A firewall rule record.

	Yields

	dict – An event record representing an insecurely exposed port.

cloudmarker.events.mockevent module

Mock event plugin for testing purpose.

	
class cloudmarker.events.mockevent.MockEvent(n=3)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mock event plugin for testing purpose.

Create an instance of MockEvent plugin.

This plugin events if the data field of a mock record is a
multiple of n.

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – A number that the record data value in mock record
must be a multiple of in order to generate an event record.

	
done()

	Perform cleanup work.

Since this is a mock plugin, this method does nothing. However,
a typical event plugin may or may not need to perform cleanup
work in this method depending on its nature of work.

	
eval(record)

	Evaluate record to check for multiples of n.

If record['raw']['data'] is a multiple of n (the
parameter with which this plugin was initialized with), then
generate an event record. Otherwise, do nothing.

If record['raw']['data] is missing, i.e., the key named
raw or data does not exist, then its record number is
assumed to be 1.

This is a mock example of a event plugin. In actual event
plugins, this method would typically check for security issues
in the record.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Record to evaluate.

	Yields

	dict – Event record if evaluation rule matches the input
record.

cloudmarker.stores package

A package for store plugins packaged with this project.

This package contains store plugins that are packaged as part of this
project. The store plugins implement a function named write() that
accepts input records and typically stores them into a persistent data
store. The event plugins also implement and a function named done
that perform cleanup work when called.

Submodules

cloudmarker.stores.esstore module

Elasticsearch store plugin.

	
class cloudmarker.stores.esstore.EsStore(host='localhost', port=9200, index='cloudmarker', buffer_size=5000000)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Elasticsearch adapter to index cloud data in Elasticsearch.

Create an instance of EsStore plugin.

The plugin uses the default port for Elasticsearch if not
specified.

The buffer_size for the plugin is the value for the maximum
number of bytes of data to be sent in a bulk API request to
Elasticsearch.

	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – Elasticsearch host

	port (int [https://docs.python.org/3/library/functions.html#int]) – Elasticsearch port

	index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Elasticsearch index

	buffer_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of bytes of data to hold
in the in-memory buffer.

	
done()

	Flush pending records to Elasticsearch.

	
write(record)

	Write JSON records to the Elasticsearch index.

Flush the buffer by saving its content to Elasticsearch when
the buffer size exceeds the configured size.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to save to Elasticsearch.

cloudmarker.stores.filestore module

Filesystem store plugin.

	
class cloudmarker.stores.filestore.FileStore(path='/tmp/cloudmarker')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A plugin to store records on the filesystem.

Create an instance of FileStore plugin.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of directory where files are written to.

	
done()

	Perform final cleanup tasks.

This method is called after all records have been written. In
this example implementation, we properly terminate the JSON
array in the .tmp file. Then we rename the .tmp file to .json
file.

Note that other implementations of a store may perform tasks
like closing a connection to a remote store or flushing any
remaining records in a buffer.

	
write(record)

	Write JSON records to the file system.

This method is called once for every record read from a
cloud. In this example implementation of a store, we simply
write the record in JSON format to a file. The list of
records is maintained as JSON array in the file. The origin
worker name in record['com']['origin_worker'] is used to
determine the filename.

The records are written to a .tmp file because we don’t want
to delete the existing complete and useful .json file
prematurely.

Note that other implementations of a store may choose to buffer
the records in memory instead of writing each record to the
store immediately. They may then flush the buffer to the store
based on certain conditions such as buffer size, time interval,
etc.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to write to the file system.

cloudmarker.stores.mongodbstore module

MongoDB store plugin.

	
class cloudmarker.stores.mongodbstore.MongoDBStore(host='localhost', port=27017, db='cloudmarker', collection='cloudmarker', username=None, password=None, buffer_size=1000)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A plugin to store records on MongoDB.

Create an instance of MongoDBStore plugin.

It will use the default port for mongodb 27017 if not specified.
The Authentication scheme will be negotiated by MongoDB and the client
for v4.0+ to SCRAM-SHA-1 or SCRAM-SHA-256 by default aftere
negotiation.

	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – hostname for the DB server

	port (int [https://docs.python.org/3/library/functions.html#int]) – port for mongoDB is listening

	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the database

	collection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of MongoDB collection.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – username for the database

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – password for username to authenticate with the db

	buffer_size (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of records to buffer

	
done()

	Flush pending records to MongoDB and close MongoDB client.

	
write(record)

	Write JSON records to the MongoDB collections.

This method is called once for every record read from a
cloud. This method saves the records into in-memory buffers. A
separate buffer is created and maintained for each record type
found in record['record_type']. When the number of records
in a buffer equals or exceeds the buffer size specified while
creating an instance of MongoDBStore plugin, the
records in the buffer are flushed (saved into a MongoDB
collection).

The record type, i.e., record['record_type'] is used to
determine the collection name in MongoDB.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to save in MongoDB.

cloudmarker.stores.splunkhecstore module

SplunkStore plugin to index data in Splunk using HEC token.

	
class cloudmarker.stores.splunkhecstore.SplunkHECStore(uri, token, index, ca_cert, buffer_size=1000)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

SplunkHECStore plugin to index cloud data in Splunk using HEC token.

Create an instance of SplunkHECStore plugin.

	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – Splunk collector service URI.

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – Splunk HEC token.

	index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Splunk HEC token accessible index.

	ca_cert (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location of cetificate file to verify the identity
of host in URI, or False to disable verification

	buffer_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of records to hold in
in-memory buffer for each record type.

	
done()

	Flush any remaining records.

	
write(record)

	Save the record in a bulk-buffer.

Also, flush the buffer by saving its content to Splunk when the buffer
size exceeds configured self._buffer_size

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to save to the Splunk.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cloudmarker	

 	
 	
 cloudmarker.alerts	

 	
 	
 cloudmarker.alerts.emailalert	

 	
 	
 cloudmarker.alerts.slackalert	

 	
 	
 cloudmarker.baseconfig	

 	
 	
 cloudmarker.clouds	

 	
 	
 cloudmarker.clouds.azcloud	

 	
 	
 cloudmarker.clouds.azvm	

 	
 	
 cloudmarker.clouds.gcpcloud	

 	
 	
 cloudmarker.clouds.mockcloud	

 	
 	
 cloudmarker.events	

 	
 	
 cloudmarker.events.azvmdatadiskencryptionevent	

 	
 	
 cloudmarker.events.azvmosdiskencryptionevent	

 	
 	
 cloudmarker.events.firewallruleevent	

 	
 	
 cloudmarker.events.mockevent	

 	
 	
 cloudmarker.manager	

 	
 	
 cloudmarker.stores	

 	
 	
 cloudmarker.stores.esstore	

 	
 	
 cloudmarker.stores.filestore	

 	
 	
 cloudmarker.stores.mongodbstore	

 	
 	
 cloudmarker.stores.splunkhecstore	

 	
 	
 cloudmarker.util	

 	
 	
 cloudmarker.workers	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | J
 | L
 | M
 | P
 | R
 | S
 | W

A

 	
 	alert_worker() (in module cloudmarker.workers)

 	Audit (class in cloudmarker.manager)

 	AzCloud (class in cloudmarker.clouds.azcloud)

 	
 	AzVM (class in cloudmarker.clouds.azvm)

 	AzVMDataDiskEncryptionEvent (class in cloudmarker.events.azvmdatadiskencryptionevent)

 	AzVMOSDiskEncryptionEvent (class in cloudmarker.events.azvmosdiskencryptionevent)

C

 	
 	cloud_worker() (in module cloudmarker.workers)

 	cloudmarker (module)

 	cloudmarker.alerts (module)

 	cloudmarker.alerts.emailalert (module)

 	cloudmarker.alerts.slackalert (module)

 	cloudmarker.baseconfig (module)

 	cloudmarker.clouds (module)

 	cloudmarker.clouds.azcloud (module)

 	cloudmarker.clouds.azvm (module)

 	cloudmarker.clouds.gcpcloud (module)

 	cloudmarker.clouds.mockcloud (module)

 	cloudmarker.events (module)

 	cloudmarker.events.azvmdatadiskencryptionevent (module)

 	
 	cloudmarker.events.azvmosdiskencryptionevent (module)

 	cloudmarker.events.firewallruleevent (module)

 	cloudmarker.events.mockevent (module)

 	cloudmarker.manager (module)

 	cloudmarker.stores (module)

 	cloudmarker.stores.esstore (module)

 	cloudmarker.stores.filestore (module)

 	cloudmarker.stores.mongodbstore (module)

 	cloudmarker.stores.splunkhecstore (module)

 	cloudmarker.util (module)

 	cloudmarker.workers (module)

 	config_dict (in module cloudmarker.baseconfig)

 	config_yaml (in module cloudmarker.baseconfig)

D

 	
 	done() (cloudmarker.alerts.emailalert.EmailAlert method)

 	(cloudmarker.alerts.slackalert.SlackAlert method)

 	(cloudmarker.clouds.azcloud.AzCloud method)

 	(cloudmarker.clouds.azvm.AzVM method)

 	(cloudmarker.clouds.gcpcloud.GCPCloud method)

 	(cloudmarker.clouds.mockcloud.MockCloud method)

 	(cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent method)

 	(cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent method)

 	(cloudmarker.events.firewallruleevent.FirewallRuleEvent method)

 	(cloudmarker.events.mockevent.MockEvent method)

 	(cloudmarker.stores.esstore.EsStore method)

 	(cloudmarker.stores.filestore.FileStore method)

 	(cloudmarker.stores.mongodbstore.MongoDBStore method)

 	(cloudmarker.stores.splunkhecstore.SplunkHECStore method)

E

 	
 	EmailAlert (class in cloudmarker.alerts.emailalert)

 	EsStore (class in cloudmarker.stores.esstore)

 	eval() (cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent method)

 	(cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent method)

 	(cloudmarker.events.firewallruleevent.FirewallRuleEvent method)

 	(cloudmarker.events.mockevent.MockEvent method)

 	
 	event_worker() (in module cloudmarker.workers)

 	expand_port_ranges() (in module cloudmarker.util)

F

 	
 	FileStore (class in cloudmarker.stores.filestore)

 	FirewallRuleEvent (class in cloudmarker.events.firewallruleevent)

 	
 	friendly_list() (in module cloudmarker.util)

 	friendly_string() (in module cloudmarker.util)

G

 	
 	GCPCloud (class in cloudmarker.clouds.gcpcloud)

J

 	
 	join() (cloudmarker.manager.Audit method)

L

 	
 	load_config() (in module cloudmarker.util)

 	
 	load_plugin() (in module cloudmarker.util)

M

 	
 	main() (in module cloudmarker.manager)

 	merge_dicts() (in module cloudmarker.util)

 	
 	MockCloud (class in cloudmarker.clouds.mockcloud)

 	MockEvent (class in cloudmarker.events.mockevent)

 	MongoDBStore (class in cloudmarker.stores.mongodbstore)

P

 	
 	parse_cli() (in module cloudmarker.util)

 	PluginError

 	
 	pluralize() (in module cloudmarker.util)

 	PluralizeError

R

 	
 	read() (cloudmarker.clouds.azcloud.AzCloud method)

 	(cloudmarker.clouds.azvm.AzVM method)

 	(cloudmarker.clouds.gcpcloud.GCPCloud method)

 	(cloudmarker.clouds.mockcloud.MockCloud method)

S

 	
 	send_email() (in module cloudmarker.util)

 	SlackAlert (class in cloudmarker.alerts.slackalert)

 	
 	SplunkHECStore (class in cloudmarker.stores.splunkhecstore)

 	start() (cloudmarker.manager.Audit method)

 	store_worker() (in module cloudmarker.workers)

W

 	
 	wrap_paragraphs() (in module cloudmarker.util)

 	write() (cloudmarker.alerts.emailalert.EmailAlert method)

 	(cloudmarker.alerts.slackalert.SlackAlert method)

 	(cloudmarker.stores.esstore.EsStore method)

 	(cloudmarker.stores.filestore.FileStore method)

 	(cloudmarker.stores.mongodbstore.MongoDBStore method)

 	(cloudmarker.stores.splunkhecstore.SplunkHECStore method)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Cloudmarker

 		
 Cloudmarker Tutorial

 		
 Install

 		
 Get Started

 		
 Configuration Format

 		
 Base Configuration

 		
 Cascading Configuration

 		
 Cloud Plugins

 		
 AzCloud

 		
 AzVM

 		
 GCPCloud

 		
 MockCloud

 		
 Event Plugins

 		
 FirewallRuleEvent

 		
 AzVMOSDiskEncryptionEvent

 		
 AzVMDataDiskEncryptionEvent

 		
 MockEvent

 		
 Store Plugins

 		
 FileStore

 		
 EsStore

 		
 MongoDBStore

 		
 SplunkHECStore

 		
 Alert Plugins

 		
 EmailAlert

 		
 SlackAlert

 		
 Framework

 		
 Schedule

 		
 Logger

 		
 Email

 		
 Cloudmarker API

 		
 cloudmarker package

 		
 Subpackages

 		
 Submodules

 		
 cloudmarker.baseconfig module

 		
 cloudmarker.manager module

 		
 cloudmarker.util module

 		
 cloudmarker.workers module

