
Cloudmarker Documentation
Release 0.1.0

Cloudmarker Authors and Contributors

May 20, 2020

Contents

1 Contents 3

2 What is Cloudmarker? 5

3 Why Cloudmarker? 7

4 Features 9

5 Wishlist 11

6 Install 13

7 Develop 15

8 Resources 17

9 Support 19

10 License 21

11 Tutorial 23
11.1 Cloudmarker Tutorial . 23

12 API 41
12.1 Cloudmarker API . 41

13 Indices 61

Python Module Index 63

Index 65

i

ii

Cloudmarker Documentation, Release 0.1.0

Cloudmarker is a cloud monitoring tool and framework.

Contents 1

https://travis-ci.com/cloudmarker/cloudmarker
https://coveralls.io/github/cloudmarker/cloudmarker?branch=master
https://github.com/cloudmarker/cloudmarker/blob/master/LICENSE.rst

Cloudmarker Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Contents

Table of Contents:

• Cloudmarker

– Contents

– What is Cloudmarker?

– Why Cloudmarker?

– Features

– Wishlist

– Install

– Develop

– Resources

– Support

– License

– Tutorial

– API

– Indices

3

Cloudmarker Documentation, Release 0.1.0

4 Chapter 1. Contents

CHAPTER 2

What is Cloudmarker?

Cloudmarker is a cloud monitoring tool and framework. It can be used as a ready-made tool that audits your Azure or
GCP cloud environments as well as a framework that allows you to develop your own cloud monitoring software to
audit your clouds.

As a monitoring tool, it performs the following actions:

• Retrieves data about each configured cloud using the cloud APIs.

• Saves or indexes the retrieved data into each configured storage system or indexing engine.

• Analyzes the data for potential issues and generates events that represent the detected issues.

• Saves the events to configured storage or indexing engines as well as sends the events as alerts to alerting
destinations.

Each of the above four aspects of the tool can be configured via a configuration file.

For example, the tool can be configured to pull data from Azure and index its data in Elasticsearch while it also
pulls data from GCP and indexes the GCP data in MongoDB. Similarly, it is possible to configure the tool to check
for unencrypted disks in Azure, generate events for it, and send them as alerts by email while it checks for insecure
firewall rules in both Azure and GCP, generate events for them, and save those events in MongoDB.

This degree of flexibility to configure audits for different clouds in different ways comes from the fact that Cloudmarker
is designed as a combination of lightweight framework and a bunch of plugins that do the heavylifting for retrieving
cloud data, storing the data, analyzing the data, generating events, and sending alerts. These four types of plugins are
formally known as cloud plugins, store plugins, event plugins, and alert plugins, respectively.

As a result of this plugin-based architecture, Cloudmarker can also be used as a framework to develop your own
plugins that extend its capabilities by adding support for new types of clouds or data sources, storage or indexing
engines, event generation, and alerting destinations.

5

Cloudmarker Documentation, Release 0.1.0

6 Chapter 2. What is Cloudmarker?

CHAPTER 3

Why Cloudmarker?

One might wonder why we need a new project like this when similar projects exist. When we began working on this
project in 2017, we were aware of similar tools that supported AWS and GCP but none that supported Azure at that
time. As a result, we wrote our own tool to support Azure. We later added support for GCP as well. What began as a
tiny proof of concept gradually turned into a fair amount of code, so we thought, we might as well share this project
online, so that others could use it and see if they find value in it.

So far, some of the highlights of this project are:

• It is simple. It is easy to understand how to use the four types of plugins (clouds, stores, events, and alerts) to
perform an audit.

• It is excellent at creating an inventory of the cloud environment.

• The data inventory it creates is easy to query.

• It is good at detecting insecure firewall rules and unencrypted disks. New detection mechanisms are coming up.

We also realize that we can add a lot more functionality to this project to make it more powerful too. See the Wishlist
section below to see new features we would like to see in this project. Our project is hosted on GitHub at https:
//github.com/cloudmarker/cloudmarker. Contributions and pull requests are welcome.

We hope that you would give this project a shot, see if it addresses your needs, and provide us some feedback by
posting a comment in our feedback thread or by creating a new issue.

7

https://github.com/cloudmarker/cloudmarker
https://github.com/cloudmarker/cloudmarker
https://github.com/cloudmarker/cloudmarker/issues/100
https://github.com/cloudmarker/cloudmarker/issues/new

Cloudmarker Documentation, Release 0.1.0

8 Chapter 3. Why Cloudmarker?

CHAPTER 4

Features

Since Cloudmarker is not just a tool but also a framework, a lot of its functionality can be extended by writing plugins.
However, Cloudmarker also comes bundled with a default set of plugins that can be used as is without writing a single
line of code. Here is a brief overview of the features that come bundled with Cloudmarker:

• Perform scheduled or ad hoc audits of cloud environment.

• Retrieve data from Azure and GCP.

• Store or index retrieved data in Elasticsearch, MongoDB, Splunk, and the file system.

• Look for insecure firewall rules and generate firewall rule events.

• Look for unencrypted disks (Azure only) and generate events.

• Send alerts for events via email and Slack as well as save alerts in one of the supported storage or indexing
engines (see the third point above).

• Normalize firewall rules from Azure and GCP which are in different formats to a common object model ("com")
so that a single query or event rule can search for or detect issues in firewall rules from both clouds.

9

Cloudmarker Documentation, Release 0.1.0

10 Chapter 4. Features

CHAPTER 5

Wishlist

• Add more event plugins to detect different types of insecure configuration.

• Normalize other types of data into a common object model ("com") just like we do right now for firewall rules.

11

Cloudmarker Documentation, Release 0.1.0

12 Chapter 5. Wishlist

CHAPTER 6

Install

Perform the following steps to set up Cloudmarker.

1. Create a virtual Python environment and install Cloudmarker in it:

python3 -m venv venv
. venv/bin/activate
pip3 install cloudmarker

2. Run sanity test:

cloudmarker -n

The above command runs a mock audit with mock plugins that generate some mock data. The mock data
generated can be found at /tmp/cloudmarker/. Logs from the tool are written to the standard output as
well as to /tmp/cloudmarker.log.

The -n or --now option tells Cloudmarker to run right now instead of waiting for a scheduled run.

To learn how to configure and use Cloudmarker with Azure or GCP clouds, see Cloudmarker Tutorial.

13

https://cloudmarker.readthedocs.io/en/latest/tutorial.html

Cloudmarker Documentation, Release 0.1.0

14 Chapter 6. Install

CHAPTER 7

Develop

This section describes how to set up a development environment for Cloudmarker. This section is useful for those who
would like to contribute to Cloudmarker or run Cloudmarker directly from its source.

1. We use primarily three tools to perform development on this project: Python 3, Git, and Make. Your system
may already have these tools. But if not, here are some brief instructions on how they can be installed.

On macOS, if you have Homebrew installed, then these tools can be be installed easily with the following
command:

brew install python git

On a Debian GNU/Linux system or in another Debian-based Linux distribution, they can be installed with the
following commands:

apt-get update
apt-get install python3 python3-venv git make

On a CentOS Linux distribution, they can be installed with these commands:

yum install centos-release-scl
yum install git make rh-python36
scl enable rh-python36 bash

Note: The scl enable command starts a new shell for you to use Python 3.

On any other system, we hope you can figure out how to install these tools yourself.

2. Clone the project repository and enter its top-level directory:

git clone https://github.com/cloudmarker/cloudmarker.git
cd cloudmarker

3. Create a virtual Python environment for development purpose:

make venv deps

15

https://brew.sh/

Cloudmarker Documentation, Release 0.1.0

This creates a virtual Python environment at ~/.venv/cloudmarker. Additionally, it also creates a conve-
nience script named venv in the current directory to easily activate the virtual Python environment which we
will soon see in the next point.

To undo this step at anytime in future, i.e., delete the virtual Python environment directory, either enter rm -rf
venv ~/.venv/cloudmarker or enter make rmvenv.

4. Activate the virtual Python environment:

. ./venv

5. In the top-level directory of the project, enter this command:

python3 -m cloudmarker -n

This generates mock data at /tmp/cloudmarker. This step serves as a sanity check that ensures that the
development environment is correctly set up and that the Cloudmarker audit framework is running properly.

6. Now that the project is set up correctly, you can create a cloudmarker.yaml to configure Cloudmarker to
scan/audit your cloud or you can perform more development on the Cloudmarker source code. See Cloudmarker
Tutorial for more details.

7. If you have set up a development environment to perform more development on Cloudmarker, please consider
sending a pull request to us if you think your development work would be useful to the community.

8. Before sending a pull request, please run the unit tests, code coverage, linters, and document generator to ensure
that no existing test has been broken and the pull request adheres to our coding conventions:

make test
make coverage
make lint
make docs

To run these four targets in one shot, enter this “shortcut” target:

make checks

Open htmlcov/index.html with a web browser to view the code coverage report.

Open docs/_build/html/index.html with a web browser to view the generated documentation.

16 Chapter 7. Develop

https://cloudmarker.readthedocs.io/en/latest/tutorial.html
https://cloudmarker.readthedocs.io/en/latest/tutorial.html

CHAPTER 8

Resources

Here is a list of useful links about this project:

• Documentation on Read The Docs

• Latest release on PyPI

• Source code on GitHub

• Issue tracker on GitHub

• Changelog on GitHub

• Cloudmarker channel on Slack

• Invitation to Cloudmarker channel on Slack

17

https://cloudmarker.readthedocs.org/
https://pypi.python.org/pypi/cloudmarker
https://github.com/cloudmarker/cloudmarker
https://github.com/cloudmarker/cloudmarker/issues
https://github.com/cloudmarker/cloudmarker/blob/master/CHANGES.rst
https://cloudmarker.slack.com/
https://bit.ly/cmslack

Cloudmarker Documentation, Release 0.1.0

18 Chapter 8. Resources

CHAPTER 9

Support

To report bugs, suggest improvements, or ask questions, please create a new issue at http://github.com/cloudmarker/
cloudmarker/issues.

19

http://github.com/cloudmarker/cloudmarker/issues
http://github.com/cloudmarker/cloudmarker/issues

Cloudmarker Documentation, Release 0.1.0

20 Chapter 9. Support

CHAPTER 10

License

This is free software. You are permitted to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of it, under the terms of the MIT License. See LICENSE.rst for the complete license.

This software is provided WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.rst for the complete disclaimer.

21

https://github.com/cloudmarker/cloudmarker/blob/master/LICENSE.rst
https://github.com/cloudmarker/cloudmarker/blob/master/LICENSE.rst

Cloudmarker Documentation, Release 0.1.0

22 Chapter 10. License

CHAPTER 11

Tutorial

11.1 Cloudmarker Tutorial

Cloudmarker is a cloud monitoring tool and framework.

11.1.1 Install

1. Create a virtual Python environment and install Cloudmarker in it:

python3 -m venv venv
. venv/bin/activate
pip3 install cloudmarker

2. Run sanity test:

cloudmarker -n

The above command runs a mock audit with mock plugins that generate some mock data. The mock data
generated can be found at /tmp/cloudmarker/. Logs from the tool are written to the standard output as
well as to /tmp/cloudmarker.log.

The -n or --now option tells Cloudmarker to run right now instead of waiting for a scheduled run.

11.1.2 Get Started

Cloudmarker’s behaviour is driven by configuration files written in YAML format. Cloudmarker comes with two
built-in mock plugins known as MockCloud and MockEvent. These mock plugins are useful in generating some
mock data to test out the Cloudmarker framework and familiarize oneself with how Cloudmarker can be configured.

We will first see how to configure the MockCloud plugin, just so that we can quickly get started with understanding
the configuration file format without having to work out how to provide Cloudmarker access to real clouds. We will
see how to work with real clouds later in this document. Follow these steps to get started:

23

https://en.wikipedia.org/wiki/YAML

Cloudmarker Documentation, Release 0.1.0

1. Create a config file named cloudmarker.yaml in the current directory with the following content:

plugins:
mymockcloud:
plugin: cloudmarker.clouds.mockcloud.MockCloud
params:

record_count: 5
record_types:
- apple
- ball
- cat

audits:
mymockaudit:
clouds:
- mymockcloud

stores:
- filestore

events:
- mockevent

alerts:
- filestore

run:
- mymockaudit

2. Enter this command to run Cloudmarker:

cloudmarker -n

3. Examine the output in /tmp/cloudmarker/mymockaudit_mymockcloud.json. It should contain a
JSON array with 5 objects as defined in the record_count value in the config. There are record_type
fields in these objects that cycle between the values "apple", "ball", and "cat" as defined in the
record_types value in the config. The data we see in this output file is generated by the cloudmarker.
clouds.mockcloud.MockCloud plugin defined under the mymockcloud config key.

4. Now examine the output in /tmp/cloudmarker/mymockaudit_mockevent. It should contain a JSON
array with 2 objects. This data is generated by the cloudmarker.clouds.mockcloud.MockEvent
plugin referred to as mockevent. The mockevent config key is defined in the built-in base config.

5. Note that the mock audit files written at /tmp/cloudmarker/ have names that are composed of audit
key name, underscore, and plugin key name. These files are written by the cloudmarker.clouds.
filestore.FileStore plugin which is specified in the config as filestore. The filestore config
key is defined in the built-in base config.

Configuration Format

Let us take a closer look at the config file format in the previous section:

plugins:
mymockcloud:
plugin: cloudmarker.clouds.mockcloud.MockCloud
params:

record_count: 5
record_types:
- apple
- ball

(continues on next page)

24 Chapter 11. Tutorial

Cloudmarker Documentation, Release 0.1.0

(continued from previous page)

- cat

audits:
mymockaudit:
clouds:

- mymockcloud
stores:

- filestore
events:

- mockevent
alerts:

- filestore

run:
- mymockaudit

There are three top-level config keys: plugins, audits, and run. These top-level keys and their values are input
to the Cloudmarker framework. They tell the framework what to do. Let us see each top-level key in more detail.

plugins

The plugins key defines one or more plugin configs. In the above example, we have defined only one plugin config
for the cloudmarker.clouds.mockcloud.MockCloud plugin. A plugin is a Python class that implements a
few methods required by the Cloudmarker framework. In this case, the MockCloud plugin has the code to generate
some mock data for the purpose of testing other plugins.

Under the plugins key, we have one or more user-defined keys that name our plugin configs. In this example, we
have defined one plugin config and chosen that name mymockcloud for it. We could name this anything. This name
appears in the logs, so it is good to name this meaningfully.

Under the user-defined key for a plugin, there are at most two keys:

• plugin: Its value is the fully qualified class name of the plugin class.

• params: Its value is a mapping of key-value pairs that specify the keyword arguments to pass to the plu-
gin class constructor expression. For example, see the API documentation of MockCloud by clicking on
this link: cloudmarker.clouds.mockcloud.MockCloud. We can see that the config key names
record_count and record_types under the the params config key match the parameter names of the
MockCloud plugin.

audits

The audits key defines one or more audit configs. In the above example, we have defined only one audit config to
generate mock data using the plugin defined under the mymockcloud config key earlier.

Under the audits key, we have one or more user-defined keys that name our audit configs. In this example, we
have defined one audit config named key mymockaudit. This name appears in the logs, so it is good to name this
meaningfully.

Under the user-defined key for an audit, there are four keys:

• clouds: Its value is a list of config keys defined under the plugins key. Each key should refer to a cloud
plugin.

• stores: Its value is a list of config keys defined under the plugins key. Each key should refer to a store
plugin.

11.1. Cloudmarker Tutorial 25

Cloudmarker Documentation, Release 0.1.0

• events: Its value is a list of config keys defined under the plugins key. Each key should refer to an event
plugin.

• alerts: Its value is a list of config keys defined under the plugins key. Each key should refer to a store or
alert plugin.

The Cloudmarker framework instantiates all the plugins in an audit and then lets the cloud plugins generate cloud
records. Within an audit, records generated by each cloud plugin are then fed to each store and event plugin configured
in the same audit.

Each cloud plugin generates data, typically, by connecting to a cloud and pulling cloud data related to resources
configured in the cloud. Each cloud plugin emits this data in Python dictionary formats (appears as JSON when
written to files or a storage/indexing system that can store JSON documents). We call each such dictionary object (or
JSON document) as a record.

Each event plugin then receives the data generated by the cloud plugins configured within the same audit. An event
plugin checks each record for security issues or some pattern. If a security issue is found in some record or if the
pattern being checked for is found, then the event plugins generate one or more events for it. These events are fed to
each alert plugin in the same audit.

Each store plugin takes the data fed to it and sends it to the store destination. A store destination is typically a storage
or indexing engine such as Elasticsearch, Splunk, etc.

Each alert plugin takes events fed to it and sends the events to an alerting destination. A store plugin can also function
as an alert plugin and vice-versa. From the framework’s perspective, there is no difference between store and alert
plugin classes because they implemented the same methods. The only difference is that the store plugins are mentioned
under the stores key in an audit config and the alert plugins are mentioned under the alerts key in an audit config.
However, some alert plugins such as the ones to send events as email alerts or Slack messages make sense only as alert
plugins and not as store plugins. That’s because we wouldn’t want to email the entire cloud data to email recipients or
Slack users but we might want to email just the events as notifications to email recipients or Slack users.

run

Finally, the run key defines the audits we want to run. Its value is a list of one or more user-defined audit keys.

Base Configuration

In the above examples, we defined mymockcloud under the plugins key but we did not define filestore or
mockevent although we used them under the audits key. That’s because they are already defined in the built-in
base config. Enter this command to see the built-in base config:

cloudmarker --print-base-config

Alternatively, see the complete built-in base config here: cloudmarker.baseconfig.

The config in cloudmarker.yaml or any other user-specified config files is merged with the built-in base config
to arrive at the final working config. The merging rules are described in the next section.

Cascading Configuration

By default, Cloudmarker looks for the following config files in the order specified:

• /etc/cloudmarker.yaml

• ~/.cloudmarker.yaml

• ~/cloudmarker.yaml

26 Chapter 11. Tutorial

Cloudmarker Documentation, Release 0.1.0

• cloudmarker.yaml

Note that the built-in base config is always used. If a config file in the list above is missing, it is ignored. If all config
files in the list above are missing, then only the built-in base config is used.

If one or more config files are present, they are merged together with the built-in base config to arrive at the final
working config. The built-in base config is loaded first. Then the config files are loaded and merged in the order
specified in the list above. A config that is loaded later has higher precedence in case of conflicting values for the same
key.

A custom list of config files to look for can be specified with the -c or --config option. For example, the following
command first loads the built-in base config, then foo.yaml from the current directory, and then bar.yaml from
the current directory:

cloudmarker -n -c foo.yaml bar.yaml

It means that in case of conflicting values for the key, the builtin-base config has the lowest priority and bar.yaml
has the highest priority.

Here is a precise specification of how two configs are merged:

• If a key in the first config does not exist in the second config, then the final config contains this key with its value
intact.

• If a key in the second config does not exist in the first config, then the final config contains this key with its value
intact.

• If a key in the first config also exists in the second config, then the final config contains this key and its value is
the value found in the second config.

This means, if a key with a list value exists in the first config and the same key with another list value exists in the
second config, then the final config is the key with the list value in the second config. The final config does not contain
the key with both lists merged together as its value.

For example, let us assume that foo.yaml contains this key:

run:
- mockaudit
- fooaudit

And bar.yaml contains this key:

run:
- baraudit

Then cloudmarker -n -c foo.yaml bar.yaml leads to the following value for this config key:

run:
- baraudit

Note how the list value of bar.yaml replaced the list value of foo.yaml while merging. In other words, when
we talk about merging of configs, only keys are merged, i.e., keys from both configs are picked for the final working
config. Values are not merged.

When there are multiple config files to be merged, the first config file is merged with the base config file, then the
second config file is merged with the result of the previous merge, and so on.

11.1.3 Cloud Plugins

11.1. Cloudmarker Tutorial 27

Cloudmarker Documentation, Release 0.1.0

AzCloud

To get started with a real audit, it is necessary to configure Cloudmarker with an actual cloud such as Azure or GCP.
In this section, we see how to configure Cloudmarker for Azure with the AzCloud plugin.

This plugin is offered by the cloudmarker.clouds.azcloud.AzCloud plugin class.

Perform the following steps to configure this plugin:

1. At first follow this how-to document at https://docs.microsoft.com/en-us/azure/active-directory/develop/
howto-create-service-principal-portal to register an application in Azure Active Directory to allow Cloudmarker
to access your Azure resources.

2. After completing the above step, create a config file named cloudmarker.yaml in the current directory with
this content:

plugins:
myazcloud:
plugin: cloudmarker.clouds.azcloud.AzCloud
params:

tenant: null
client: null
secret: null

audits:
myazaudit:

clouds:
- myazcloud

stores:
- filestore

events:
- firewallruleevent

alerts:
- filestore

run:
- myazaudit

3. Then replace the null values for tenant, client, and secret as described below:

• tenant: This is the tenant ID obtained from following the “Get tenant ID” section of the how-to doc-
ument. This is also known as the directory ID. To find this value, go to Azure Portal > Azure Active
Directory > Properties > Directory ID. This value is also available in the newly created application at
Azure Portal > Azure Active Directory > App Registrations > (the app) > Directory (tenant) ID.

• client: This is the application ID created in the “Get application ID and authentication key” section
of the how-to document. This value is also available at Azure Portal > Azure Active Directory > App
Registrations > (the app) > Application (client) ID.

• secret: This is the secret password created in the “Get application ID and authentication key” section of
the how-to document. This valuable is available only while creating a new secret at Azure Portal > Azure
Active Directory > App Registrations > (the app) > New client secret.

4. After setting these values, enter this command to run Cloudmarker:

cloudmarker -n

5. After Cloudmarker completes running, check these files in /tmp/cloudmarker/:

• myazaudit_myazcloud.json: This file contains the data obtained from Azure cloud by the
cloudmarker.clouds.azcloud.AzCloud plugin configured under the myazaudit config key.

28 Chapter 11. Tutorial

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/

Cloudmarker Documentation, Release 0.1.0

• myazaudit_firewallruleevent.json: This file contains insecure firewall rules detected by the
cloudmarker.events.firewallruleevent.FirewallRuleEvent referred to with the key
name firewallruleevent in the config. Note that firewallruleevent config key is defined in
the built-in base config.

AzVM

This is another plugin for Azure that has a narrower but deeper scope than the AzCloud plugin described in the
previous section. It pulls only virtual machine (VM) data with more details about each VM.

This plugin is offered by the cloudmarker.clouds.azvm.AzVM plugin class.

Perform the following steps to use the AzVM plugin:

1. As mentioned in the previous section, register an application in Azure Active Directory to allow Cloudmarker
to access your Azure resources.

2. After completing the above step, create a config file named cloudmarker.yaml in the current directory with
this content:

plugins:
myazvm:

plugin: cloudmarker.clouds.azvm.AzVM
params:

tenant: f3cfe067-d008-48f3-b026-cf0dd7409b25
client: 6c4980e2-2652-466d-8157-853f9d0a288f
secret: 4FAU+gYAkl96zbnlXZqu25d5iZBlDhzj0EHD8fi6HR8=

audits:
myazaudit:

clouds:
- myazvm

stores:
- filestore

events:
- firewallruleevent
- azvmosdiskencryptionevent
- azvmdatadiskencryptionevent

alerts:
- filestore

run:
- myazaudit

3. Then replace the null values for tenant, client, and secret with actual values as described in the
previous section.

4. After setting these values, enter this command to run Cloudmarker:

cloudmarker -n

5. After Cloudmarker completes running, check the generated files in /tmp/cloudmarker/.

Let us discuss how AzCloud and AzVM are different.

AzCloud pulls data at subscription level. It first connects to Azure with the specified credentials, then queries for
all subscriptions it has access to, and then loops over each subscription and makes one API call per subscription per
resource type to pull all resources of that type. It pulls data related to virtual machines (VMs), application gateways,
load balancers, network interface controllers (NICs), network security groups (NSGs), etc.

11.1. Cloudmarker Tutorial 29

Cloudmarker Documentation, Release 0.1.0

AzVM on the other hand pulls data at the virtual machine level. It makes one API call per VM. Thus, it makes more
number of API calls. It retrieves only VM data but it gets more detailed VM data. For example, this plugin also obtains
the power state, the disk encryption status, etc. of the VM. These detailed level of information cannot be obtained by
the AzCloud plugin.

To understand the difference between the two plugins better, consider an environment where there are 5 subscriptions
such that each subscription has exactly 20 VMs and 50 NSGs. So, there are a total of 100 VMs and 250 NSGs.
AzCloud would make only 5 API calls to pull data for all 100 VMs and another 5 API calls to pull data for all NSGs.
On the other hand, AzVM would make 100 API calls to pull data for all VMs. AzVM cannot pull data for NSGs or any
other type of resources. However, the VM data obtained by AzVM contains power state, disk encryption status, and
other detailed information. AzCloud data does not pull such detailed information.

In general, AzCloud runs faster due to less number of API calls and is usually sufficient for most types of cloud
monitoring use cases. AzVM is necessary only for advanced use cases such as monitoring whether a particular VM is
running or stopped, if its disks are encrypted or not, etc.

Note in the config above that event plugins cloudmarker.events.azvmosdiskencryptionevent.
AzVMOSDiskEncryptionEvent and cloudmarker.events.azvmdatadiskencryptionevent.
AzVMDataDiskEncryptionEvent referred to with the built-in base config keys
azvmosdiskencryptionevent and azvmdatadiskencryptionevent can be used with AzVM. These
plugins work only with AzVM records and generates events if OS disks and data disks are found. They ignore records
generated by any other cloud plugins.

GCPCloud

Follow these steps to get started with auditing a GCP cloud environment.

1. Follow the steps at https://cloud.google.com/iam/docs/creating-managing-service-account-keys to create a ser-
vice account key using the GCP Console and download it as a file named keyfile.json.

2. Then create a config file name cloudmarker.yaml with this content:

plugins:
mygcpcloud:

plugin: cloudmarker.clouds.gcpcloud.GCPCloud
params:

key_file_path: keyfile.json
zone: null

audits:
mygcpaudit:

clouds:
- mygcpcloud

stores:
- filestore

events:
- firewallruleevent

alerts:
- filestore

run:
- mygcpaudit

3. Replace the value of zone key to the zone name in which your resources reside. The zone name can be found
in GCP Console > (select project) > Go to Compute Engine. An example of zone name is us-east1-b.
Note: We are aware that the requirement of providing a specific zone name in the config makes this plugin less
flexible. This will be fixed in the next release. The fix would allow the plugin to discover resources in all zones
automatically.

30 Chapter 11. Tutorial

https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://console.cloud.google.com/

Cloudmarker Documentation, Release 0.1.0

4. Now enter this command to run Cloudmarker:

cloudmarker -n

5. Now examine these files generated by Cloudmarker at /tmp/cloudmarker/:

• mygcpaudit_mygcpcloud.json: This file contains the data obtained from GCP cloud by the
cloudmarker.clouds.gcpcloud.GCPCloud plugin configured under the mygcpaudit config
key.

• mygcpaudit_firewallruleevent.json: This file contains insecure firewall rules detected by the
cloudmarker.events.firewallruleevent.FirewallRuleEvent plugin referred to with
the key name firewallruleevent in the built-in base config.

MockCloud

The MockCloud plugin has already been discussed in the Get Started section once. A config key named mockcloud
already configures this plugin in the built-in base config as follows:

plugins:
mockcloud:
plugin: cloudmarker.clouds.mockcloud.MockCloud

There are no parameters specified for this plugin in the built-in base config because this plugin class already has default
keyword parameters. See cloudmarker.clouds.mockcloud.MockCloud for the keyword parameters with
default values. By default, it generates 10 mock records such that record['ext']['record_type'] alternate
between 'foo' and 'bar' where record represents each JSON object generated by this plugin.

To override the default behaviour to, say, generate 20 records with record types that alternate between ‘foo’, ‘bar’, and
‘baz’, we could override the mockcloud config key defined in the built-in base config. To do so, create a file named
cloudmarker.yaml with the following content only:

plugins:
mockcloud:
params:

record_count: 20
record_types:
- foo
- bar
- baz

Then run Cloudmarker with this command:

cloudmarker -n

Note that we did not specify the plugin key under mockcloud here because that is already available in the base
config (see cloudmarker.baseconfig). Similarly, we did not define audits or run config keys here because
they are also defined in the base config. We only defined what we needed to override in the base config.

11.1.4 Event Plugins

The event plugins have been discussed in the sections for cloud plugins above. Here is how the config keys for these
plugins have been defined in the base config (see cloudmarker.baseconfig):

11.1. Cloudmarker Tutorial 31

Cloudmarker Documentation, Release 0.1.0

plugins:
...

firewallruleevent:
plugin: cloudmarker.events.firewallruleevent.FirewallRuleEvent

azvmosdiskencryptionevent:
plugin: cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent

azvmdatadiskencryptionevent:
plugin: cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent

The ellipsis (...) in this example denote content omitted in the above example for the sake of brevity.

FirewallRuleEvent

The FirewallRuleEvent plugin can be used with both AzCloud and GCPCloud plugins. It looks for firewall
rules that expose sensitive ports to the entire Internet and generates events for them.

This plugin is offered by the cloudmarker.events.firewallruleevent.FirewallRuleEvent plugin
class.

By default, it monitors for insecure exposure of a fixed set of TCP ports. If that’s okay for you, there is no need to
define this plugin explicitly in the config file. The built-in base config key firewallruleevent can be used as
is. However, if there is a need for monitoring a custom set of ports, then it can be overridden. Here is an example
configuration that monitors for insecure exposure of ports 22 and 3389 in Azure cloud:

plugins:
myazcloud:
plugin: cloudmarker.clouds.azcloud.AzCloud
params:

tenant: null
client: null
secret: null

firewallruleevent:
params:

ports:
- 22
- 3389

audits:
myazaudit:
clouds:

- myazcloud
stores:

- filestore
events:

- firewallruleevent
alerts:

- filestore

run:
- myazaudit

Remember to replace the null values in the config above with actual values before using this config.

32 Chapter 11. Tutorial

Cloudmarker Documentation, Release 0.1.0

AzVMOSDiskEncryptionEvent

The AzVMOSDiskEncryptionEvent plugin can be used with AzVM plugin. It looks for unencrypted OS disks
attached to Azure virtual machines.

This plugin is offered by the cloudmarker.events.azvmosdiskencryptionevent.
AzVMOSDiskEncryptionEvent plugin class.

An example usage of this plugin is available in the AzVM section. Since it only checks whether disks are encrypted
or not (a binary decision), it does not accept any parameters that can be configured in config file. Therefore, it is
recommended to use the built-in base config key named azosdiskencryptionevent for this plugin.

AzVMDataDiskEncryptionEvent

The AzVMDataDiskEncryptionEvent plugin can be used with AzVM plugin. It looks for unencrypted data
disks attached to Azure virtual machines.

This plugin is offered by the cloudmarker.events.azvmdatadiskencryptionevent.
AzVMDataDiskEncryptionEvent plugin class.

An example usage of this plugin is available in the AzVM section. Since it only checks whether disks are encrypted
or not (a binary decision), it does not accept any parameters that can be configured in config file. Therefore, it is
recommended to use the built-in base config key named azdatadiskencryptionevent for this plugin.

MockEvent

The MockEvent plugin can be used with MockCloud plugin. The MockCloud plugin generates data such
that record['raw']['data'] has an integer value that increments in each record where record here
represents each record generated by MockCloud. The MockEvent plugin when used checks the value of
record['raw']['data'] in each input record and generates an event if this value is a multiple of some
number (3 by default).

This plugin is offered by the cloudmarker.events.mockevent.MockEvent plugin class.

We use MockCloud and MockEvent plugins together to test out the store and alert plugins.

In case, we want the MockEvent plugin to look for a multiple of some other number, say, 5, we can override the
built-in base config as follows:

plugins:
mockevent:
params:

n: 5

11.1.5 Store Plugins

FileStore

We have been using the FileStore plugin already in the examples above. This plugin is good for quick testing
because we can see the cloud data records and events written locally to a file that we can easily inspect.

This plugin is offered by the cloudmarker.stores.filestore.FileStore plugin class.

By default, it writes the output files to the /tmp/cloudmarker/ directory. Here is how it can be configured to
write the output files to another directory, say, ~/cloudmarker:

11.1. Cloudmarker Tutorial 33

Cloudmarker Documentation, Release 0.1.0

plugins:
filestore:
params:

path: ~/cloudmarker

On running Cloudmarker with this config, we would see that the output files have been written to ~/cloudmarker,
i.e., $HOME/cloudmarker or in other words, the cloudmarker directory under the home directory. Yes,
FileStore performs tilde expansion to expand a path beginning with ~ to a user’s home directory as mentioned
here: os.path.expanduser().

EsStore

The EsStore plugin can be used to send cloud data as well as events to an Elasticsearch cluster.

This plugin is offered by the cloudmarker.stores.esstore.EsStore plugin class.

In this section, we will use a Docker image of Elasticsearch to quickly get started with configuring this plugin. Here
are the steps to set up a Docker container for Elasticsearch:

1. Enter the following command to run a Docker container with Elasticsearch instance:

docker run -p 9200:9200 -p 9300:9300 \
-e 'discovery.type=single-node' \
docker.elastic.co/elasticsearch/elasticsearch:7.0.1

2. Ensure that Elasticsearch is able to index documents:

curl -H 'Content-Type: application/json' \
-X PUT http://localhost:9200/foo/foo/1?pretty \
-d '{"a": "apple", "b": "ball"}'

3. Double-check that the document was indexed:

curl http://localhost:9200/foo/_search?pretty

Now that Elasticsearch is running in a Docker container and indexing data, configure Cloudmarker to send data and
events to it with the following steps:

1. Create cloudmarker.yamlwith the following content to configure Cloudmarker to send mock cloud records
and mock events to Elasticsearch:

audits:
mockaudit:
stores:
- filestore
- esstore

alerts:
- filestore
- esstore

The above example is a very minimal config. It works because the esstore plugin config key is defined in the
built-in base config and it sends data to a locally running Elasticsearch by default. Here is what a more elaborate
config would look like:

plugins:
esstore:
host: localhost

(continues on next page)

34 Chapter 11. Tutorial

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_01
https://docs.python.org/3/library/os.path.html#os.path.expanduser

Cloudmarker Documentation, Release 0.1.0

(continued from previous page)

port: 9200
index: cloudmarker

audits:
mockaudit:
stores:
- filestore
- esstore

alerts:
- filestore
- esstore

2. Run Cloudmarker:

cloudmarker -n

3. Confirm that mock cloud records and mock events are indexed in Elasticsearch:

curl http://localhost:9200/cloudmarker/_search?pretty

MongoDBStore

The MongoDBStore plugin can be used to send cloud data as well as events to a MongoDB collection.

This plugin is offered by the cloudmarker.stores.mongodbstore.MongoDBStore plugin class.

In this section, we will use a Docker image of MongoDB to quickly get started with configuring this plugin. Here are
the steps to set up a Docker container for MongoDB:

1. Enter the following commands to run a Docker container with MongoDB instance:

docker rm mongo; docker run --name mongo -p 27017:27017 mongo

2. Ensure that we can insert data into MongoDB:

docker exec -it mongo mongo foo --eval 'db.bar.insert({"a": "apple"})'

3. Double-check that the data was inserted:

docker exec -it mongo mongo foo --eval 'db.bar.find()'

Now that MongoDB is running in a Docker container, configure Cloudmarker to send data to it with these steps:

1. Create cloudmarker.yamlwith the following content to configure Cloudmarker to send mock cloud records
and mock events to MongoDB:

audits:
mockaudit:
stores:
- filestore
- mongodbstore

alerts:
- filestore
- mongodbstore

11.1. Cloudmarker Tutorial 35

Cloudmarker Documentation, Release 0.1.0

The above example is a very minimal config. It works because the mongodbstore plugin config key is
defined in the built-in base config and it sends data to a locally running MongoDB by default. Here is what a
more elaborate config would look like:

plugins:
mongodbstore:
host: localhost
port: 27017
db: cloudmarker
collection: cloudmarker
username: null
password: null

audits:
mockaudit:
stores:
- filestore
- mongodbstore

alerts:
- filestore
- mongodbstore

If the MongoDB instance requires user authentication, then the username and password config keys should
be set to the appropriate values.

2. Run Cloudmarker:

cloudmarker -n

3. Confirm that mock cloud records and mock events are indexed in Elasticsearch:

docker exec -it mongo mongo cloudmarker --eval 'db.cloudmarker.find()'

SplunkHECStore

The SplunkHECStore plugin can be used to send cloud data as well as events to a Splunk HTTP Event Collector
(HEC).

This plugin is offered by the cloudmarker.stores.splunkhecstore.SplunkHECStore plugin class.

In this section, we will use a Docker image of Splunk to quickly get started with configuring this plugin. Here are the
steps to set up a Docker container for Splunk:

1. Enter the following command to run a Docker container with Splunk instance with HTTP Event Collector
(HEC):

docker run -e 'SPLUNK_START_ARGS=--accept-license' \
-e 'SPLUNK_PASSWORD=admin123' \
-e 'SPLUNK_HEC_TOKEN=token123' \
-p 8000:8000 -p 8088:8088 splunk/splunk

2. Ensure that Splunk HEC is able to receive events:

curl -k https://localhost:8088/services/collector/event \
-H 'Authorization: Splunk token123' \
-d '{"event": "hello, world"}'

3. To double-check that Splunk received the event, visit http://localhost:8000/ with a web browser.

36 Chapter 11. Tutorial

http://localhost:8000/

Cloudmarker Documentation, Release 0.1.0

4. Then log into Splunk with username as admin and password as the password specified in the docker com-
mand in step 1 above.

5. Click on “Search & Reporting” on the left sidebar.

6. In the search box, enter * (asterisk) and click the search button. One event with the string hello, world
should appear in the result.

Now that Splunk is running in a Docker container and accepting events via HEC, configure Cloudmarker to send data
and events to it with the following steps:

1. Create cloudmarker.yamlwith the following content to configure Cloudmarker to send mock cloud records
and mock events to Splunk:

plugins:
splunkstore:
plugin: cloudmarker.stores.splunkhecstore.SplunkHECStore
params:

uri: https://localhost:8088/services/collector
token: token123
index: main
ca_cert: false

audits:
mockaudit:
stores:
- filestore
- splunkstore

2. Run Cloudmarker with this configuration:

cloudmarker -n

3. Visit http://localhost:8000/ with a web browser.

4. Then log into Splunk with username as admin and password as the password specified in the docker com-
mand in step 1 above.

5. Click on “Search & Reporting” on the left sidebar.

6. In the search box, enter * (asterisk) and click the search button. There should be many new events now.

7. In the search box, enter the following query to see the mock cloud records:

index=main com.record_type=mock

There should 10 records in the results.

8. In the search box, enter the following query to see the mock events:

index=main com.record_type=mock_event

There should be 4 events in the results.

9. In the search box, enter the following query to see the event description fields in a table format:

index=main com.record_type=mock_event | table com.description

11.1. Cloudmarker Tutorial 37

http://localhost:8000/

Cloudmarker Documentation, Release 0.1.0

11.1.6 Alert Plugins

All of the store plugins discussed above can also be used as alert plugins. Additionally, there are a few plugins that are
specialized as alert plugins only and do not serve very well as store plugins. Only these plugins are discussed in this
section.

EmailAlert

The EmailAlert plugin can be used to send events to email recipients via SMTP.

This plugin is offered by the cloudmarker.alerts.emailalert.EmailAlert plugin class.

The EmailAlert parameters are same as that of the cloudmarker.util.send_email() function, so read
its API documentation to learn about the parameters this plugin accepts.

Perform the following steps to configure Cloudmarker to send mock events as email alerts:

1. Create a config file named cloudmarker.yaml in the current directory with the following content:

plugins:
emailalert:

plugin: cloudmarker.alerts.emailalert.EmailAlert
params:

from_addr: Cloudmarker <cloudmarker@example.com>
to_addrs:
- user1@example.com
- user2@example.com

subject: Cloudmarker Alert
host: smtp.example.com

audits:
mockaudit:
alerts:
- filestore
- emailalert

2. Set the values of from_addr and to_addrs appropriately.

3. If authentication is required, add username and password parameters. See cloudmarker.
send_email() documentation for details.

4. If the SMTP host does not support SSL, then add ssl_mode parameter and set its value to starttls if
the SMTP host supports STARTTLS. If the SMTP host supports neither SSL nor STARTTLS, set its value to
disable.

5. If the SMTP host is listening on a non-standard port, then set the port parameter to an integer value representing
the expected port number. If the SMTP host is listening on a standard port, then there is no need to set this
parameter. It has a default value of 0 which automatically selects the appropriate port based on the value of
ssl_mode parameter.

6. Run Cloudmarker with this configuration:

cloudmarker -n

7. Check the configured recipients’ inboxes to confirm that the email alerts have been received.

38 Chapter 11. Tutorial

Cloudmarker Documentation, Release 0.1.0

SlackAlert

The SlackAlert plugin can be used to send events to Slack users via a Slack bot.

This plugin is offered by the cloudmarker.alerts.slackalert.SlackAlert plugin class.

Perform the following steps to configure Cloudmarker to send mock events as alerts via Slack:

1. Create a config file named cloudmarker.yaml in the current directory with the following content:

plugins:
slackalert:

plugin: cloudmarker.alerts.slackalert.SlackAlert
params:

bot_user_token: null
to:
- user1@example.com
- user2@example.com

text: Attention - Cloudmarker Alert

audits:
mockaudit:
alerts:
- filestore
- slackalert

2. Change the value of bot_user_token key from null to actual token of the Slack bot in the config file.

3. Change the vlaue of to key from example users to actual Slack users.

4. Now, enter this command to run Cloudmarker:

cloudmarker -n

5. The mock events would be sent to the configured Slack users as a JSON snippet.

11.1.7 Framework

Schedule

In the built-in base config (see cloudmarker.baseconfig), there is a schedule config key that specifies the
local time (in 24-hour notation) at which Cloudmarker should start running audits every day. This schedule is honoured
when Cloudmarker is run without the -n or -now option as follows:

cloudmarker

Logger

In the built-in base config (see cloudmarker.baseconfig), there is a logger config key that specifies an
elaborate logging configuration. This can be overridden in a config file to customize the logger. For example, by
default, the log files are written to /tmp/cloudmarker.log. If we want to override this location to, say, log/
cloudmarker.log, we can define a config file named cloudmarker.yaml like this:

logger:
handlers:

(continues on next page)

11.1. Cloudmarker Tutorial 39

Cloudmarker Documentation, Release 0.1.0

(continued from previous page)

file:
filename: log/cloudmarker.log

To test this configuration, enter these commands:

mkdir -p log
cloudmarker -n
cat log/cloudmarker.log

To see the default logger config, see cloudmarker.baseconfig. To understand more about what each of the
config keys under logger mean, see the Python standard library logging documentation: Configuration dictionary
schema.

Email

When Cloudmarker is made to run in scheduled mode, it could be useful to get email notifications about when the
audits start and the audits stop. The email configuration for such audit emails can be specified under a config key
named email. Note that this should be a top-level key in the config file, i.e., it should be at the same level as the
audits and run keys.

The value for the email config key should be similar to the value of params key of an email alert. See EmailAlert
section for more details on this. Here is an example:

emailalert:
from_addr: Cloudmarker <cloudmarker@example.com>
to_addrs:
- user1@example.com
- user2@example.com

subject: Cloudmarker Alert
host: smtp.example.com

With this configuration, Cloudmarker sends four types of emails:

• An email when all configured audits begin.

• An email when all configured audits end.

• An email when each configured audit begins.

• An email when each configured audit ends.

Therefore, if there are 3 audits configured under the audits config key, then a total of 8 emails are sent: 1 begin
audits email, 1 end audits email, 3 begin audit emails (one for each audit), and 3 end audit emails (one for each audit).

40 Chapter 11. Tutorial

https://docs.python.org/3/library/logging.config.html#logging-config-dictschema
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

CHAPTER 12

API

12.1 Cloudmarker API

12.1.1 cloudmarker package

Cloudmarker - Cloud security monitoring framework.

Subpackages

cloudmarker.alerts package

A package for alert plugins packaged with this project.

This package contains alert plugins that are packaged as part of this project. The alert plugins implement a function
named write() that accepts input records and typically sends them to an alerting destination. The alert plugins also
implement a function named done that perform cleanup work when called.

Note that the alert plugins implement the exact same interface as the store plugins in the cloudmarker.
stores package. So a store plugin can usually serve equally well as an alert plugin, and vice versa. In fact,
some of the store plugins such as cloudmarker.stores.esstore.EsStore and cloudmarker.stores.
mongodbstore.MongoDBStore are indeed used as alert plugins too because security events can be alerted by
storing them in an Elasticsearch index or MongoDB collection.

If a plugin can serve as both a store plugin and an alert plugin, we keep them in the cloudmarker.stores package.
If a plugin makes sense only as an alert plugin, we keep them in this cloudmarker.alerts package.

Submodules

cloudmarker.alerts.emailalert module

Email alert plugin.

41

Cloudmarker Documentation, Release 0.1.0

class cloudmarker.alerts.emailalert.EmailAlert(**kwargs)
Bases: object

A plugin to send email alerts.

Create an instance of EmailAlert plugin.

This class accepts the same arguments as cloudmarker.util.send_email().

The content argument is not honoured. Even if a content argument is provided, it is ignored by this class
because this class defines its own content from the event records it receives in its write() method.

done()
Send the buffered events as an email alert.

write(record)
Save event record in a buffer.

Parameters record (dict) – An event record.

cloudmarker.alerts.slackalert module

Alerter to send Slack messages for identified anomalies.

class cloudmarker.alerts.slackalert.SlackAlert(bot_user_token, to, text,
temp_file=’/tmp/cloudmarker/slackalert.json’)

Bases: object

Alert plugin to send Slack alerts.

Initialize the class:SlackAlert.

Parameters

• bot_user_token (string) – Token for Slack bot user.

• to (list) – List of recipients (string) to send Slack alert to.

• text (string) – Message body.

• temp_file (string) – Name of file to be used to save interim JSON record which will
be used to attach as report to Slack message.

done()
Write the JSON data to a file and send alert.

This function writes the JSON data to a file. The created JSON file will be used by self._post_message
method to send the file as an attachment.

write(record)
Write records to in memory buffer.

This method will collate all the records in the list self._slack_report only.

Parameters record (list) – Records generated by Events plugin.

cloudmarker.clouds package

A package for cloud plugins packaged with this project.

This package contains cloud plugins that are packaged as part of this project. The cloud plugins implement a function
named read() that connects to remote data sources, typically cloud APIs, and yield data records.

42 Chapter 12. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Cloudmarker Documentation, Release 0.1.0

Submodules

cloudmarker.clouds.azcloud module

Microsoft Azure cloud plugin to read Azure infrastructure data.

This module defines the AzCloud class that retrieves data from Microsoft Azure.

class cloudmarker.clouds.azcloud.AzCloud(tenant, client, secret, _max_subs=0,
_max_recs=0)

Bases: object

Azure cloud plugin.

Create an instance of AzCloud plugin.

Note: The _max_subs and _max_recs arguments should be used only in the development-test-
debug phase. They should not be used in production environment. This is why we use the convention
of beginning their names with underscore.

Parameters

• tenant (str) – Azure subscription tenant ID.

• client (str) – Azure service principal application ID.

• secret (str) – Azure service principal password.

• _max_subs (int) – Maximum number of subscriptions to fetch data for if the value is
greater than 0.

• _max_recs (int) – Maximum number of records of each type to fetch under each sub-
scription.

done()
Perform clean up tasks.

Currently, this method does nothing because there are no clean up tasks associated with the AzCloud
plugin. This may change in future.

read()
Return an Azure cloud infrastructure configuration record.

Yields dict – An Azure cloud infrastructure configuration record.

cloudmarker.clouds.azvm module

Microsoft Azure virtual machine plugin to read Azure virtual machine data.

This module defines the AzVM class that retrieves virtula machine data from Microsoft Azure.

class cloudmarker.clouds.azvm.AzVM(tenant, client, secret, _max_subs=0, _max_recs=0)
Bases: object

Azure Virtual Machine plugin.

Create an instance of AzVM plugin.

Note: The _max_subs and _max_recs arguments should be used only in the development-test-
debug phase. They should not be used in production environment. This is why we use the convention
of beginning their names with underscore.

12.1. Cloudmarker API 43

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

Cloudmarker Documentation, Release 0.1.0

Parameters

• tenant (str) – Azure subscription tenant ID.

• client (str) – Azure service principal application ID.

• secret (str) – Azure service principal password.

• _max_subs (int) – Maximum number of subscriptions to fetch data for if the value is
greater than 0.

• _max_recs (int) – Maximum number of virtual machines records to fetch for each sub-
scription.

done()
Perform clean up tasks.

Currently, this method does nothing because there are no clean up tasks associated with the AzVM plugin.
This may change in future.

read()
Return an Azure virtual machine record.

Yields dict – An Azure virtual machine record.

cloudmarker.clouds.gcpcloud module

Google Cloud Platform (GCP) plugin to read GCP infrastructure data.

This module defines the GCPCloud class that retrieves data from Google Cloud Platform.

class cloudmarker.clouds.gcpcloud.GCPCloud(key_file_path, zone)
Bases: object

GCP cloud plugin.

Create an instance of GCPCloud plugin.

Parameters

• key_file_path (str) – Path of the service account key file for a project.

• zone (str) – Zone of GCP Project, e.g., us-east1-b.

done()
Perform clean up tasks.

Currently, this method does nothing because there are no clean up tasks associated with the GCPCloud
plugin. This may change in future.

read()
Return a GCP infrastructure configuration record.

Yields dict – Firewall rule or VM instance configuration data.

cloudmarker.clouds.mockcloud module

Mock cloud plugin for testing purpose.

44 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Cloudmarker Documentation, Release 0.1.0

class cloudmarker.clouds.mockcloud.MockCloud(record_count=10, record_types=(’foo’,
’bar’))

Bases: object

Mock cloud plugin for testing purpose.

Create an instance of MockCloud plugin.

This plugin generates mock records. The records generated contains three fields under three top-level keys that
we also call “bucket keys”: raw, data, and type, as shown in the example below:

Example

Here is an example that shows that the records generated by this plugin with the default initialization parameters:

>>> from cloudmarker.clouds import mockcloud
>>> cloud = mockcloud.MockCloud()
>>> for record in cloud.read():
... print(record['raw']['data'],
... record['ext']['record_type'],
... record['com']['record_type'])
...
0 foo mock
1 bar mock
2 foo mock
3 bar mock
4 foo mock
5 bar mock
6 foo mock
7 bar mock
8 foo mock
9 bar mock

The three top-level keys, raw, ext, and com represent the names of the three buckets under which various data
attributes are kept. While this is only a mock plugin, but in an actual cloud plugin implementation, the meaning
of these buckets are as follows:

• raw: The value for the raw key is a dict object that represents the actual data object obtained from a
cloud in its original form. No modifications should be done to the object obtained from the cloud.

• ext: The value for the ext key is a dict object which contains key-value pairs for any additional
cloud-specific metadata that need to be stored. The data in this bucket is also known as extended metadata.

• com: The value for the com key is a dict object which contains key-value pairs for any metadata that is
common to all clouds.

Parameters

• record_count (int) – Number of mock records to generate.

• record_types (tuple) – A tuple of strings that represent the different record types to
be generated.

done()
Perform cleanup work.

Since this is a mock plugin, this method does nothing. However, a typical cloud plugin may or may not
need to perform cleanup work in this method depending on its nature of work.

12.1. Cloudmarker API 45

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Cloudmarker Documentation, Release 0.1.0

read()
Generate a record.

This method creates and yields mock records.

In actual cloud implementations, this method would typically connect to the cloud, retrieve JSON objects
using the cloud API, and yield those objects as dict objects.

Yields dict – Mock record.

cloudmarker.events package

A package for event plugins packaged with this project.

This package contains event plugins that are packaged as part of this project. The event plugins implement a function
named eval that accepts one record as parameter, evaluates the record, and generates zero or more event records for
each input record. The event plugins also implement and a function named done that perform cleanup work when
called.

Submodules

cloudmarker.events.azvmdatadiskencryptionevent module

Microsoft Azure VM Data disk encryption event.

This module defines the AzVMDataDiskEncryptionEvent class that identifies an unencrypted Azure VM data
disk. This plugin works on the virtual machine properties found in the com bucket of virtual_machine records.

class cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent
Bases: object

Az VM Data disk encryption event plugin.

Create an instance of AzVMDataDiskEncryptionEvent.

done()
Perform cleanup work.

Currently, this method does nothing. This may change in future.

eval(record)
Evaluate Azure virtual machine to check for unencrypted data disks.

Parameters record (dict) – A virtual machine record.

Yields dict – An event record representing an unencrypted data disk of an Azure virtual machine

cloudmarker.events.azvmosdiskencryptionevent module

Microsoft Azure VM OS disk encryption event.

This module defines the AzVMOSDiskEncryptionEvent class that identifies an unencrypted Azure OS disk. This
plugin works on the virtual machine properties found in the com bucket of virtual_machine records.

class cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent
Bases: object

Az VM OS disk encryption event plugin.

46 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

Cloudmarker Documentation, Release 0.1.0

Create an instance of AzVMOSDiskEncryptionEvent.

done()
Perform cleanup work.

Currently, this method does nothing. This may change in future.

eval(record)
Evaluate Azure virtual machine to check for unencrypted OS disk.

Parameters record (dict) – A virtual machine record.

Yields dict – An event record representing an unencrypted OS disk of an Azure virtual machine

cloudmarker.events.firewallruleevent module

Firewall rule event.

This module defines the FirewallRuleEvent class that identifies weak firewall rules. This plugin works on the
firewall properties found in the com bucket of firewall rule records.

class cloudmarker.events.firewallruleevent.FirewallRuleEvent(ports=None)
Bases: object

Firewall rule event plugin.

Create an instance of FirewallRuleEvent plugin.

Parameters ports (list) – A list of strings that represent the ports to be checked for insecure
exposure to the Internet. If None is specified or if unspecified, then this plugin defaults to
checking ports 22, 3389, 1433, 1521, 3306, and 5432 for insecure exposure.

done()
Perform cleanup work.

Currently, this method does nothing. This may change in future.

eval(record)
Evaluate firewall rules to check for insecurely exposed ports.

Parameters record (dict) – A firewall rule record.

Yields dict – An event record representing an insecurely exposed port.

cloudmarker.events.mockevent module

Mock event plugin for testing purpose.

class cloudmarker.events.mockevent.MockEvent(n=3)
Bases: object

Mock event plugin for testing purpose.

Create an instance of MockEvent plugin.

This plugin events if the data field of a mock record is a multiple of n.

Parameters n (int) – A number that the record data value in mock record must be a multiple of in
order to generate an event record.

12.1. Cloudmarker API 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

Cloudmarker Documentation, Release 0.1.0

done()
Perform cleanup work.

Since this is a mock plugin, this method does nothing. However, a typical event plugin may or may not
need to perform cleanup work in this method depending on its nature of work.

eval(record)
Evaluate record to check for multiples of n.

If record['raw']['data'] is a multiple of n (the parameter with which this plugin was initialized
with), then generate an event record. Otherwise, do nothing.

If record['raw']['data] is missing, i.e., the key named raw or data does not exist, then its record
number is assumed to be 1.

This is a mock example of a event plugin. In actual event plugins, this method would typically check for
security issues in the record.

Parameters record (dict) – Record to evaluate.

Yields dict – Event record if evaluation rule matches the input record.

cloudmarker.stores package

A package for store plugins packaged with this project.

This package contains store plugins that are packaged as part of this project. The store plugins implement a function
named write() that accepts input records and typically stores them into a persistent data store. The event plugins
also implement and a function named done that perform cleanup work when called.

Submodules

cloudmarker.stores.esstore module

Elasticsearch store plugin.

class cloudmarker.stores.esstore.EsStore(host=’localhost’, port=9200, in-
dex=’cloudmarker’, buffer_size=5000000)

Bases: object

Elasticsearch adapter to index cloud data in Elasticsearch.

Create an instance of EsStore plugin.

The plugin uses the default port for Elasticsearch if not specified.

The buffer_size for the plugin is the value for the maximum number of bytes of data to be sent in a bulk
API request to Elasticsearch.

Parameters

• host (str) – Elasticsearch host

• port (int) – Elasticsearch port

• index (str) – Elasticsearch index

• buffer_size (int) – Maximum number of bytes of data to hold in the in-memory buffer.

done()
Flush pending records to Elasticsearch.

48 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Cloudmarker Documentation, Release 0.1.0

write(record)
Write JSON records to the Elasticsearch index.

Flush the buffer by saving its content to Elasticsearch when the buffer size exceeds the configured size.

Parameters record (dict) – Data to save to Elasticsearch.

cloudmarker.stores.filestore module

Filesystem store plugin.

class cloudmarker.stores.filestore.FileStore(path=’/tmp/cloudmarker’)
Bases: object

A plugin to store records on the filesystem.

Create an instance of FileStore plugin.

Parameters path (str) – Path of directory where files are written to.

done()
Perform final cleanup tasks.

This method is called after all records have been written. In this example implementation, we properly
terminate the JSON array in the .tmp file. Then we rename the .tmp file to .json file.

Note that other implementations of a store may perform tasks like closing a connection to a remote store
or flushing any remaining records in a buffer.

write(record)
Write JSON records to the file system.

This method is called once for every record read from a cloud. In this example implementation of a store,
we simply write the record in JSON format to a file. The list of records is maintained as JSON array in
the file. The origin worker name in record['com']['origin_worker'] is used to determine the
filename.

The records are written to a .tmp file because we don’t want to delete the existing complete and useful
.json file prematurely.

Note that other implementations of a store may choose to buffer the records in memory instead of writing
each record to the store immediately. They may then flush the buffer to the store based on certain conditions
such as buffer size, time interval, etc.

Parameters record (dict) – Data to write to the file system.

cloudmarker.stores.mongodbstore module

MongoDB store plugin.

class cloudmarker.stores.mongodbstore.MongoDBStore(host=’localhost’, port=27017,
db=’cloudmarker’, collec-
tion=’cloudmarker’, user-
name=None, password=None,
buffer_size=1000)

Bases: object

A plugin to store records on MongoDB.

Create an instance of MongoDBStore plugin.

12.1. Cloudmarker API 49

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

Cloudmarker Documentation, Release 0.1.0

It will use the default port for mongodb 27017 if not specified. The Authentication scheme will be negotiated
by MongoDB and the client for v4.0+ to SCRAM-SHA-1 or SCRAM-SHA-256 by default aftere negotiation.

Parameters

• host (str) – hostname for the DB server

• port (int) – port for mongoDB is listening

• db (str) – name of the database

• collection (str) – Name of MongoDB collection.

• username (str) – username for the database

• password (str) – password for username to authenticate with the db

• buffer_size (int) – maximum number of records to buffer

done()
Flush pending records to MongoDB and close MongoDB client.

write(record)
Write JSON records to the MongoDB collections.

This method is called once for every record read from a cloud. This method saves the records
into in-memory buffers. A separate buffer is created and maintained for each record type found in
record['record_type']. When the number of records in a buffer equals or exceeds the buffer
size specified while creating an instance of MongoDBStore plugin, the records in the buffer are flushed
(saved into a MongoDB collection).

The record type, i.e., record['record_type'] is used to determine the collection name in Mon-
goDB.

Parameters record (dict) – Data to save in MongoDB.

cloudmarker.stores.splunkhecstore module

SplunkStore plugin to index data in Splunk using HEC token.

class cloudmarker.stores.splunkhecstore.SplunkHECStore(uri, token, index, ca_cert,
buffer_size=1000)

Bases: object

SplunkHECStore plugin to index cloud data in Splunk using HEC token.

Create an instance of SplunkHECStore plugin.

Parameters

• uri (str) – Splunk collector service URI.

• token (str) – Splunk HEC token.

• index (str) – Splunk HEC token accessible index.

• ca_cert (str) – Location of cetificate file to verify the identity of host in URI, or False
to disable verification

• buffer_size (int) – Maximum number of records to hold in in-memory buffer for each
record type.

done()
Flush any remaining records.

50 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Cloudmarker Documentation, Release 0.1.0

write(record)
Save the record in a bulk-buffer.

Also, flush the buffer by saving its content to Splunk when the buffer size exceeds configured
self._buffer_size

Parameters record (dict) – Data to save to the Splunk.

Submodules

cloudmarker.baseconfig module

Base configuration.

cloudmarker.baseconfig.config_yaml
Base configuration as YAML code.

Type str

cloudmarker.baseconfig.config_dict
Base configuration as Python dictionary.

Type dict

Here is the complete base configuration present as a string in the config_yaml attribute:

Base configuration
plugins:

mockcloud:
plugin: cloudmarker.clouds.mockcloud.MockCloud

filestore:
plugin: cloudmarker.stores.filestore.FileStore

esstore:
plugin: cloudmarker.stores.esstore.EsStore

mongodbstore:
plugin: cloudmarker.stores.mongodbstore.MongoDBStore

firewallruleevent:
plugin: cloudmarker.events.firewallruleevent.FirewallRuleEvent

azvmosdiskencryptionevent:
plugin: cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent

azvmdatadiskencryptionevent:
plugin: cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent

mockevent:
plugin: cloudmarker.events.mockevent.MockEvent

audits:
mockaudit:
clouds:

- mockcloud
stores:

- filestore
events:

(continues on next page)

12.1. Cloudmarker API 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Cloudmarker Documentation, Release 0.1.0

(continued from previous page)

- mockevent
alerts:

- filestore

run:
- mockaudit

logger:
version: 1

disable_existing_loggers: false

formatters:
simple:

format: >-
%(asctime)s [%(process)s] %(levelname)s
%(name)s:%(lineno)d - %(message)s

datefmt: "%Y-%m-%d %H:%M:%S"

handlers:
console:

class: logging.StreamHandler
formatter: simple
stream: ext://sys.stdout

file:
class: logging.handlers.TimedRotatingFileHandler
formatter: simple
filename: /tmp/cloudmarker.log
when: midnight
encoding: utf8
backupCount: 5

loggers:
adal-python:

level: WARNING

root:
level: INFO
handlers:

- console
- file

schedule: "00:00"

cloudmarker.manager module

Manager of worker subprocesses.

This module invokes the worker subprocesses that perform the cloud security monitoring tasks. Each worker subpro-
cess wraps around a cloud, store, event, or alert plugin and executes the plugin in a separate subprocess.

class cloudmarker.manager.Audit(audit_key, audit_version, config)
Bases: object

Audit manager.

52 Chapter 12. API

https://docs.python.org/3/library/functions.html#object

Cloudmarker Documentation, Release 0.1.0

This class encapsulates a set of worker subprocesses and worker input queues for a single audit configuration.

Create an instance of Audit from configuration.

A single audit definition (from a list of audit definitions under the audits key in the configuration) is instanti-
ated. Each audit definition contains lists of cloud plugins, store plugins, event plugins, and alert plugins. These
plugins are instantiated and multiprocessing queues are set up to take records from one plugin and feed them to
another plugin as per the audit workflow.

Parameters

• audit_key (str) – Key name for an audit configuration. This key is looked for in
config['audits'].

• audit_version (str) – Audit version string.

• config (dict) – Configuration dictionary. This is the entire configuration dictionary that
contains top-level keys named clouds, stores, events, alerts, audits, run, etc.

join()
Wait until all workers terminate.

start()
Start audit by starting all workers.

cloudmarker.manager.main()
Run the framework based on the schedule.

cloudmarker.util module

Utility functions.

exception cloudmarker.util.PluginError
Bases: Exception

Represents an error while loading a plugin.

exception cloudmarker.util.PluralizeError
Bases: Exception

Represents an error while converting a word to plural form.

cloudmarker.util.expand_port_ranges(port_ranges)
Expand port_ranges to a set of ports.

Examples

Here is an example usage of this function:

>>> from cloudmarker import util
>>> ports = util.expand_port_ranges(['22', '3389', '8080-8085'])
>>> print(ports == {22, 3389, 8080, 8081, 8082, 8083, 8084, 8085})
True
>>> ports = util.expand_port_ranges(['8080-8084', '8082-8086'])
>>> print(ports == {8080, 8081, 8082, 8083, 8084, 8085, 8086})
True

Note that in a port range of the form m-n, both m and n are included in the expanded port set. If m > n, we get
an empty port set.

12.1. Cloudmarker API 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#set

Cloudmarker Documentation, Release 0.1.0

>>> ports = util.expand_port_ranges(['8085-8080'])
>>> print(ports == set())
True

If an invalid port range is found, it is ignored.

>>> ports = util.expand_port_ranges(['8080', '8081a', '8082'])
>>> print(ports == {8080, 8082})
True
>>> ports = util.expand_port_ranges(['7070-7075', '8080a-8085'])
>>> print(ports == {7070, 7071, 7072, 7073, 7074, 7075})
True

Parameters port_ranges (list) – A list of strings where each string is a port number (e.g.,
'80') or port range (e.g., 80-89).

Returns

A set of integers that represent the ports specified by port_ranges.

Return type set

cloudmarker.util.friendly_list(items, conjunction=’and’)
Translate a list of items to a human-friendly list of items.

Examples

Here are a few example usages of this function:

>>> from cloudmarker import util
>>> util.friendly_list([])
'none'
>>> util.friendly_list(['apple'])
'apple'
>>> util.friendly_list(['apple', 'ball'])
'apple and ball'
>>> util.friendly_list(['apple', 'ball', 'cat'])
'apple, ball, and cat'
>>> util.friendly_list(['apple', 'ball'], 'or')
'apple or ball'
>>> util.friendly_list(['apple', 'ball', 'cat'], 'or')
'apple, ball, or cat'

Parameters items (list) – List of items.

Returns

Human-friendly list of items with correct placement of comma and conjunction.

Return type str

cloudmarker.util.friendly_string(technical_string)
Translate a technical string to a human-friendly phrase.

In most of our code, we use succint strings to express various technical details, e.g., 'gcp' to express Google
Cloud Platform. However these technical strings are not ideal while writing human-friendly messages such as a
description of a security issue detected or a recommendation to remediate such an issue.

54 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Cloudmarker Documentation, Release 0.1.0

This function helps in converting such technical strings into human-friendly phrases that can be used in strings
intended to be read by end users (e.g., security analysts responsible for protecting their cloud infrastructure) of
this project.

Examples

Here are a few example usages of this function:

>>> from cloudmarker import util
>>> util.friendly_string('azure')
'Azure'
>>> util.friendly_string('gcp')
'Google Cloud Platform (GCP)'

Parameters technical_string (str) – A technical string.

Returns

Human-friendly string if a translation from a technical string to friendly string exists; the
same string otherwise.

Return type str

cloudmarker.util.load_config(config_paths)
Load configuration from specified configuration paths.

Parameters config_paths (list) – Configuration paths.

Returns A dictionary of configuration key-value pairs.

Return type dict

cloudmarker.util.load_plugin(plugin_config)
Construct an object with specified plugin class and parameters.

The plugin_config parameter must be a dictionary with the following keys:

• plugin: The value for this key must be a string that represents the fully qualified class name of the
plugin. The fully qualified class name is in the dotted notation, e.g., pkg.module.ClassName.

• params: The value for this key must be a dict that represents the parameters to be passed to the
__init__ method of the plugin class. Each key in the dictionary represents the parameter name and
each value represents the value of the parameter.

Example

Here is an example usage of this function:

>>> from cloudmarker import util
>>> plugin_config = {
... 'plugin': 'cloudmarker.clouds.mockcloud.MockCloud',
... 'params': {
... 'record_count': 4,
... 'record_types': ('baz', 'qux')
... }
... }
...
>>> plugin = util.load_plugin(plugin_config)

(continues on next page)

12.1. Cloudmarker API 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Cloudmarker Documentation, Release 0.1.0

(continued from previous page)

>>> print(type(plugin))
<class 'cloudmarker.clouds.mockcloud.MockCloud'>
>>> for record in plugin.read():
... print(record['raw']['data'],
... record['ext']['record_type'],
... record['com']['record_type'])
...
0 baz mock
1 qux mock
2 baz mock
3 qux mock

Parameters plugin_config (dict) – Plugin configuration dictionary.

Returns An object of type mentioned in the plugin parameter.

Return type object

Raises PluginError – If plugin class name is invalid.

cloudmarker.util.merge_dicts(*dicts)
Recursively merge dictionaries.

The input dictionaries are not modified. Given any number of dicts, deep copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.

Example

Here is an example usage of this function:

>>> from cloudmarker import util
>>> a = {'a': 'apple', 'b': 'ball'}
>>> b = {'b': 'bat', 'c': 'cat'}
>>> c = util.merge_dicts(a, b)
>>> print(c == {'a': 'apple', 'b': 'bat', 'c': 'cat'})
True

Parameters *dicts (dict) – Variable length dictionary list

Returns Merged dictionary

Return type dict

cloudmarker.util.parse_cli(args=None)
Parse command line arguments.

Parameters args (list) – List of command line arguments.

Returns Parsed command line arguments.

Return type argparse.Namespace

cloudmarker.util.pluralize(count, word, *suffixes)
Convert word to plural form if count is not 1.

56 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/argparse.html#argparse.Namespace

Cloudmarker Documentation, Release 0.1.0

Examples

In the simplest form usage, this function just adds an 's' to the input word when the plural form needs to be
used.

>>> from cloudmarker import util
>>> util.pluralize(0, 'apple')
'apples'
>>> util.pluralize(1, 'apple')
'apple'
>>> util.pluralize(2, 'apple')
'apples'

The plural form of some words cannot be formed merely by adding an 's' to the word but requires adding a
different suffix. For such cases, provide an additional argument that specifies the correct suffix.

>>> util.pluralize(0, 'potato', 'es')
'potatoes'
>>> util.pluralize(1, 'potato', 'es')
'potato'
>>> util.pluralize(2, 'potato', 'es')
'potatoes'

The plural form of some words cannot be formed merely by adding a suffix but requires removing a suffix and
then adding a new suffix. For such cases, provide two additional arguments: one that specifies the suffix to
remove from the input word and another to specify the suffix to add.

>>> util.pluralize(0, 'sky', 'y', 'ies')
'skies'
>>> util.pluralize(1, 'sky', 'y', 'ies')
'sky'
>>> util.pluralize(2, 'sky', 'y', 'ies')
'skies'

Returns

The input word itself if count is 1; plural form of the word otherwise.

Return type str

cloudmarker.util.send_email(from_addr, to_addrs, subject, content, host=”, port=0,
ssl_mode=’ssl’, username=”, password=”, debug=0)

Send email message.

When ssl_mode` is ``'ssl' and host is uspecified or specified as '' (the default), the local host is
used. When ssl_mode is 'ssl' and port is unspecified or specified as 0, the standard SMTP-over-SSL
port, i.e., port 465, is used. See smtplib.SMTP_SSL documentation for more details on this.

When ssl_mode is 'ssl'` and if ``host or port are unspecified, i.e., if host or port are '' and/or
0, respectively, the OS default behavior is used. See smtplib.SMTP documentation for more details on this.

We recommend these parameter values:

• Leave ssl_mode unspecified (thus 'ssl' by default) if your SMTP server supports SSL.

• Set ssl_mode to 'starttls' explicitly if your SMTP server does not support SSL but it supports
STARTTLS.

• Set ssl_mode to 'disable' explicitly if your SMTP server supports neither SSL nor STARTTLS.

12.1. Cloudmarker API 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/smtplib.html#smtplib.SMTP_SSL
https://docs.python.org/3/library/smtplib.html#smtplib.SMTP

Cloudmarker Documentation, Release 0.1.0

• Set host to the SMTP hostname or address explicitly.

• Leave port unspecified (thus 0 by default), so that the appropriate port is chosen automatically.

With these recommendations, this function should do the right thing automatically, i.e., connect to port 465 if
use_ssl is unspecified or False and port 25 if use_ssl is True.

Note that in case of SMTP, there are two different encryption protocols in use:

• SSL/TLS (or implicit SSL/TLS): SSL/TLS is used from the beginning of the connection. This occurs
typically on port 465. This is enabled by default (ssl_mode as 'ssl').

• STARTTLS (or explicit SSL/TLS): The SMTP session begins as a plaintext session. Then the client (this
function in this case) makes an explicit request to switch to SSL/TLS by sending the STARTTLS command
to the server. This occurs typically on port 25 or port 587. Set ssl_mode to 'starttls' to enable this
behaviour

If username is unspecified or specified as an empty string, no SMTP authentication is done. If username is
specified as a non-empty string, then SMTP authentication is done.

Parameters

• from_addr (str) – Sender’s email address.

• to_addrs (list) – A list of str objects where each str object is a recipient’s email
address.

• subject (str) – Email subject.

• content (str) – Email content.

• host (str) – SMTP host.

• port (int) – SMTP port.

• ssl_mode (str) – SSL mode to use: 'ssl' for SSL/TLS connection (the default),
'starttls' for STARTTLS, and 'disable' to disable SSL.

• username (str) – SMTP username.

• password (str) – SMTP password.

• debug (int or bool) – Debug level to pass to SMTP.set_debuglevel() to debug
an SMTP session. Set to 0 (the default) or False to disable debugging. Set to 1 or True
to see SMTP messages. Set to 2 to see timestamped SMTP messages.

cloudmarker.util.wrap_paragraphs(text, width=70)
Wrap each paragraph in text to the specified width.

If the text is indented with any common leading whitespace, then that common leading whitespace is removed
from every line in text. Further, any remaining leading and trailing whitespace is removed. Finally, each
paragraph is wrapped to the specified width.

Parameters width (int) – Maximum length of wrapped lines.

cloudmarker.workers module

Worker functions.

The functions in this module wrap around plugin classes such that these worker functions can be specified as the
target parameter while launching a new subprocess with multiprocessing.Process.

Each worker function can run as a separate subprocess. While wrapping around a plugin class, each worker function
creates the multiprocessing queues necessary to pass records from one plugin class to another.

58 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process

Cloudmarker Documentation, Release 0.1.0

cloudmarker.workers.alert_worker(audit_key, audit_version, plugin_key, plugin, input_queue)
Worker function for alert plugins.

This function behaves like cloudmarker.workers.store_worker(). See its documentation for de-
tails.

Parameters

• audit_key (str) – Audit key name in configuration.

• audit_version (str) – Audit version string.

• plugin_key (str) – Plugin key name in configuration.

• plugin (object) – Alert plugin object.

• input_queue (multiprocessing.Queue) – Queue to read records from.

cloudmarker.workers.cloud_worker(audit_key, audit_version, plugin_key, plugin, output_queues)
Worker function for cloud plugins.

This function expects the plugin object to implement a read method that yields records. This function calls
this read method to retrieve records and puts each record into each queue in output_queues.

Parameters

• audit_key (str) – Audit key name in configuration.

• audit_version (str) – Audit version string.

• plugin_key (str) – Plugin key name in configuration.

• plugin (object) – Cloud plugin object.

• output_queues (list) – List of multiprocessing.Queue objects to write
records to.

cloudmarker.workers.event_worker(audit_key, audit_version, plugin_key, plugin, input_queue,
output_queues)

Worker function for event plugins.

This function expects the plugin object to implement a eval method that accepts a single record as a param-
eter and yields one or more records, and a done method to perform cleanup work in the end.

This function gets records from input_queue and passes each record to the eval method of plugin. Then
it puts each record yielded by the eval method into each queue in output_queues.

When there are no more records in the input_queue, i.e., once None is found in the input_queue, this
function calls the done method of the plugin to indicate that record processing is over.

Parameters

• audit_key (str) – Audit key name in configuration.

• audit_version (str) – Audit version string.

• plugin_key (str) – Plugin key name in configuration.

• plugin (object) – Store plugin object.

• input_queue (multiprocessing.Queue) – Queue to read records from.

• output_queues (list) – List of multiprocessing.Queue objects to write
records to.

cloudmarker.workers.store_worker(audit_key, audit_version, plugin_key, plugin, input_queue)
Worker function for store plugins.

12.1. Cloudmarker API 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue

Cloudmarker Documentation, Release 0.1.0

This function expects the plugin object to implement a write method that accepts a single record as a
parameter and a done method to perform cleanup work in the end.

This function gets records from input_queue and passes each record to the write method of plugin.

When there are no more records in the input_queue, i.e., once None is found in the input_queue, this
function calls the done method of the plugin to indicate that record processing is over.

Parameters

• audit_key (str) – Audit key name in configuration.

• audit_version (str) – Audit version string.

• plugin_key (str) – Plugin key name in configuration.

• plugin (object) – Store plugin object.

• input_queue (multiprocessing.Queue) – Queue to read records from.

60 Chapter 12. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue

CHAPTER 13

Indices

• genindex

• modindex

• search

61

Cloudmarker Documentation, Release 0.1.0

62 Chapter 13. Indices

Python Module Index

c
cloudmarker, 41
cloudmarker.alerts, 41
cloudmarker.alerts.emailalert, 41
cloudmarker.alerts.slackalert, 42
cloudmarker.baseconfig, 51
cloudmarker.clouds, 42
cloudmarker.clouds.azcloud, 43
cloudmarker.clouds.azvm, 43
cloudmarker.clouds.gcpcloud, 44
cloudmarker.clouds.mockcloud, 44
cloudmarker.events, 46
cloudmarker.events.azvmdatadiskencryptionevent,

46
cloudmarker.events.azvmosdiskencryptionevent,

46
cloudmarker.events.firewallruleevent,

47
cloudmarker.events.mockevent, 47
cloudmarker.manager, 52
cloudmarker.stores, 48
cloudmarker.stores.esstore, 48
cloudmarker.stores.filestore, 49
cloudmarker.stores.mongodbstore, 49
cloudmarker.stores.splunkhecstore, 50
cloudmarker.util, 53
cloudmarker.workers, 58

63

Cloudmarker Documentation, Release 0.1.0

64 Python Module Index

Index

A
alert_worker() (in module cloudmarker.workers),

58
Audit (class in cloudmarker.manager), 52
AzCloud (class in cloudmarker.clouds.azcloud), 43
AzVM (class in cloudmarker.clouds.azvm), 43
AzVMDataDiskEncryptionEvent (class in cloud-

marker.events.azvmdatadiskencryptionevent),
46

AzVMOSDiskEncryptionEvent (class in cloud-
marker.events.azvmosdiskencryptionevent), 46

C
cloud_worker() (in module cloudmarker.workers),

59
cloudmarker (module), 41
cloudmarker.alerts (module), 41
cloudmarker.alerts.emailalert (module), 41
cloudmarker.alerts.slackalert (module), 42
cloudmarker.baseconfig (module), 51
cloudmarker.clouds (module), 42
cloudmarker.clouds.azcloud (module), 43
cloudmarker.clouds.azvm (module), 43
cloudmarker.clouds.gcpcloud (module), 44
cloudmarker.clouds.mockcloud (module), 44
cloudmarker.events (module), 46
cloudmarker.events.azvmdatadiskencryptionevent

(module), 46
cloudmarker.events.azvmosdiskencryptionevent

(module), 46
cloudmarker.events.firewallruleevent

(module), 47
cloudmarker.events.mockevent (module), 47
cloudmarker.manager (module), 52
cloudmarker.stores (module), 48
cloudmarker.stores.esstore (module), 48
cloudmarker.stores.filestore (module), 49
cloudmarker.stores.mongodbstore (module),

49

cloudmarker.stores.splunkhecstore (mod-
ule), 50

cloudmarker.util (module), 53
cloudmarker.workers (module), 58
config_dict (in module cloudmarker.baseconfig), 51
config_yaml (in module cloudmarker.baseconfig), 51

D
done() (cloudmarker.alerts.emailalert.EmailAlert

method), 42
done() (cloudmarker.alerts.slackalert.SlackAlert

method), 42
done() (cloudmarker.clouds.azcloud.AzCloud method),

43
done() (cloudmarker.clouds.azvm.AzVM method), 44
done() (cloudmarker.clouds.gcpcloud.GCPCloud

method), 44
done() (cloudmarker.clouds.mockcloud.MockCloud

method), 45
done() (cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent

method), 46
done() (cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent

method), 47
done() (cloudmarker.events.firewallruleevent.FirewallRuleEvent

method), 47
done() (cloudmarker.events.mockevent.MockEvent

method), 47
done() (cloudmarker.stores.esstore.EsStore method),

48
done() (cloudmarker.stores.filestore.FileStore method),

49
done() (cloudmarker.stores.mongodbstore.MongoDBStore

method), 50
done() (cloudmarker.stores.splunkhecstore.SplunkHECStore

method), 50

E
EmailAlert (class in cloudmarker.alerts.emailalert),

41
EsStore (class in cloudmarker.stores.esstore), 48

65

Cloudmarker Documentation, Release 0.1.0

eval() (cloudmarker.events.azvmdatadiskencryptionevent.AzVMDataDiskEncryptionEvent
method), 46

eval() (cloudmarker.events.azvmosdiskencryptionevent.AzVMOSDiskEncryptionEvent
method), 47

eval() (cloudmarker.events.firewallruleevent.FirewallRuleEvent
method), 47

eval() (cloudmarker.events.mockevent.MockEvent
method), 48

event_worker() (in module cloudmarker.workers),
59

expand_port_ranges() (in module cloud-
marker.util), 53

F
FileStore (class in cloudmarker.stores.filestore), 49
FirewallRuleEvent (class in cloud-

marker.events.firewallruleevent), 47
friendly_list() (in module cloudmarker.util), 54
friendly_string() (in module cloudmarker.util),

54

G
GCPCloud (class in cloudmarker.clouds.gcpcloud), 44

J
join() (cloudmarker.manager.Audit method), 53

L
load_config() (in module cloudmarker.util), 55
load_plugin() (in module cloudmarker.util), 55

M
main() (in module cloudmarker.manager), 53
merge_dicts() (in module cloudmarker.util), 56
MockCloud (class in cloudmarker.clouds.mockcloud),

44
MockEvent (class in cloudmarker.events.mockevent),

47
MongoDBStore (class in cloud-

marker.stores.mongodbstore), 49

P
parse_cli() (in module cloudmarker.util), 56
PluginError, 53
pluralize() (in module cloudmarker.util), 56
PluralizeError, 53

R
read() (cloudmarker.clouds.azcloud.AzCloud method),

43
read() (cloudmarker.clouds.azvm.AzVM method), 44
read() (cloudmarker.clouds.gcpcloud.GCPCloud

method), 44

read() (cloudmarker.clouds.mockcloud.MockCloud
method), 45

S
send_email() (in module cloudmarker.util), 57
SlackAlert (class in cloudmarker.alerts.slackalert),

42
SplunkHECStore (class in cloud-

marker.stores.splunkhecstore), 50
start() (cloudmarker.manager.Audit method), 53
store_worker() (in module cloudmarker.workers),

59

W
wrap_paragraphs() (in module cloudmarker.util),

58
write() (cloudmarker.alerts.emailalert.EmailAlert

method), 42
write() (cloudmarker.alerts.slackalert.SlackAlert

method), 42
write() (cloudmarker.stores.esstore.EsStore method),

48
write() (cloudmarker.stores.filestore.FileStore

method), 49
write() (cloudmarker.stores.mongodbstore.MongoDBStore

method), 50
write() (cloudmarker.stores.splunkhecstore.SplunkHECStore

method), 50

66 Index

	Contents
	What is Cloudmarker?
	Why Cloudmarker?
	Features
	Wishlist
	Install
	Develop
	Resources
	Support
	License
	Tutorial
	Cloudmarker Tutorial

	API
	Cloudmarker API

	Indices
	Python Module Index
	Index

